
BJT Device Equations and Small-Signal Models

Notation

The notations used here for voltages and currents correspond to the following conventions: Dc bias
values are indicated by an upper case letter with upper case subscripts, e.g. VDS , IC . Instantaneous
values of small-signal variables are indicated by a lower-case letter with lower-case subscripts, e.g.
vs, ic. Total values are indicated by a lower-case letter with upper-case subscripts, e.g. vBE , iD.
Circuit symbols for independent sources are circular and symbols for controlled sources have a
diamond shape. Voltage sources have a ± sign within the symbol and current sources have an
arrow.

Device Equations

Figure 1 shows the circuit symbols for the npn and pnp BJTs. In the active mode, the collector-base
junction is reverse biased and the base-emitter junction is forward biased. For the npn device, the
active-mode collector and base currents are given by

iC = IS exp

µ
vBE
VT

¶
iB =

iC
β

(1)

where VT is the thermal voltage, IS is the saturation current, and β is the base-to-collector current
gain. These are given by

VT =
kT

q
= 0.025V for T = 290K = 25.86mV for T = 300K (2)

IS = IS0

µ
1 +

vCE
VA

¶
(3)

β = β0

µ
1 +

vCE
VA

¶
(4)

where VA is the Early voltage and IS0 and β0, respectively, are the zero bias values of IS and β.
Because IS/β = IS0/β0, it follows that iB is not a function of vCE. The equations apply to the
pnp device if the subscripts BE and CE are reversed.

Figure 1: BJT circuit symbols.

The emitter-to-collector current gain α is defined as the ratio iC/iE. To solve for this, we can
write

iE = iB + iC =

µ
1

β
+ 1

¶
iC =

1+ β

β
iC (5)
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It follows that

α =
iC
iE
=

β

1 + β
(6)

Thus the currents are related by the equations

iC = βiB = αiE (7)

Transfer and Output Characteristics

The transfer characteristics are a plot of the collector current iC as a function of the base-to-emitter
voltage vBE with the collector-to-emitter voltage vCE held constant. From Eqs. 1 and 3, we can
write

iC = IS0

µ
1 +

vCE
VA

¶
exp

µ
vBE
VT

¶
(8)

It follows that iC varies exponentially with vBE. A plot of this variation is given in Fig. 2. It
can be seen from the plot that the collector current is essentially zero until the base-to-emitter
voltage reaches a threshold value. Above this value, the collector current increases rapidly. The
threshold value is typically in the range of 0.5 to 0.6 V. For high current transistors, it is usually
smaller. The plot shows a single curve. If vCE is increased, the current for a given vBE is larger.
However, the displacement between the curves is so small that it can be difficult to distinguish
between them. The small-signal transconductance gm defined below is the slope of the transfer
characteristics curve evaluated at the quiescent or dc operating point for a device.

Figure 2: BJT transfer characteristics.

The output characteristics are a plot of the collector current iC as a function of the collector-
to-emitter voltage vCE with the base current iB held constant. From Eqs. 1 and 4, we can write

iC = β0

µ
1 +

vCE
VA

¶
iB (9)

It follows that iC varies linearly with vCE. A plot of this variation is given in Fig. 3. For small
vCE such that 0 ≤ vCE < vBE , Eq. (9) does not hold. In the region in Fig. 3 where this holds, the
bjt is saturated. The small-signal collector-to-emitter resistance r0 defined below is the reciprocal
of the slope of the transfer characteristics curve evaluated at the quiescent or dc operating point
for a device.
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Figure 3: BJT output characteristics.

Bias Equation

Figure 4(a) shows the BJT with the external circuits represented by Thévenin dc circuits. If the
BJT is biased in the active region, we can write

VBB − VEE = IBRBB + VBE + IEREE

=
IC
β
RBB + VBE +

IC
α
REE (10)

This equation can be solved for IC to obtain

IC =
VBB − VEE − VBE
RBB/β +REE/α

(11)

It can be seen from Fig. 2 that large changes in IC are associated with small changes in VBE . This
makes it possible to calculate IC by assuming typical values of VBE. Values in the range from 0.6V
to 0.7V are commonly used. Two sets of values for α and β are convenient for hand calculations.
One is α = 0.99 and β = 99. The other is α = 0.995 and β = 199.

Figure 4: (a) BJT dc bias circuit. (b) Circuit for Example 1.

Example 1 Figure 4(b) shows a BJT dc bias circuit. It is given that V + = 15V, R1 = 20kΩ,
R2 = 10kΩ, R3 = R4 = 3kΩ, R5 = R6 = 2kΩ. Solve for IC1 and IC2. Assume VBE = 0.7V and
β = 100 for each transistor.
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Solution. For Q1, we have VBB1 = V +R2/ (R1 +R2), RBB1 = R1kR2, VEE1 = −IB2R4 =
−IC2R4/β, VEE1 = 0, and REE1 = R4. For Q2, we have VBB2 = IE1R4 = IC1R4/α, RBB2 = R4,
VEE2 = 0, REE2 = R6. Thus the bias equations are

V +
R2

R1 +R2
+

IC2
β

R4 = VBE +
IC1
β

R1kR2 + IC1
α

R4

IC1
α

R4 = VBE +
IC2
β

R4 +
IC2
α

R6

These equations can be solved simultaneously to obtain IC1 = 1.41mA and IC2 = 1.74mA.

Hybrid-π Model

Let each current and voltage be written as the sum of a dc component and a small-signal ac
component as follows:

iC = IC + ic iB = IB = ib (12)

vBE = VBE + vbe vCE = VCE + vce (13)

If the ac components are sufficiently small, we can write

ic =
∂IC
∂VBE

vbe +
∂IC
∂VCE

vce ib =
∂IB
∂VBE

vbe (14)

where the derivatives are evaluated at the dc bias values. Let us define the transconductance gm,
the collector-to-emitter resistance r0, and the base-to-emitter resistance rπ as follows:

gm =
∂IC
∂VBE

=
IS
VT
exp

µ
VBE
VT

¶
=

IC
VT

(15)

r0 =

µ
∂IC
∂VCE

¶−1
=

·
IS0
VA

exp

µ
VBE
VT

¶¸−1
=

VA + VCE
IC

(16)

rπ =

µ
∂IB
∂VBE

¶−1
=

·
IS0
β0VT

exp

µ
VBE
VT

¶¸−1
=

VT
IB

(17)

The collector and base currents can thus be written

ic = i0c +
vce
r0

ib =
vπ
rπ

(18)

where
i0c = gmvπ vπ = vbe (19)

The small-signal circuit which models these equations is given in Fig. 5(a). This is called the
hybrid-π model. The resistor rx, which does not appear in the above equations, is called the base
spreading resistance. It represents the resistance of the connection to the base region inside the
device. Because the base region is very narrow, the connection exhibits a resistance which often
cannot be neglected.

The small-signal base-to-collector ac current gain β is defined as the ratio i0c/ib. It is given by

β =
i0c
ib
=

gmvπ
ib

= gmrπ =
IC
VT

VT
IB

=
IC
IB

(20)

Note that ic differs from i0c by the current through r0. Therefore, ic/ib 6= β unless r0 =∞.
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Figure 5: (a) Hybrid-π model. (b) T model.

T Model

The T model replaces the resistor rπ in series with the base with a resistor re in series with the
emitter. This resistor is called the emitter intrinsic resistance. The current i0e can be written

i0e = ib + i0c =
µ
1

β
+ 1

¶
i0c =

1 + β

β
i0c =

i0c
α

(21)

where α is the small-signal emitter-to-collector ac current gain given by

α =
β

1 + β
(22)

Thus the current i0c can be written
i0c = αi0e (23)

The voltage vπ can be related to i0e as follows:

vπ = ibrπ =
i0c
β
rπ =

αi0e
β

rπ = i0e
αrπ
β
= i0e

rπ
1 + β

= i0ere (24)

It follows that the intrinsic emitter resistance re is given by

re =
vπ
i0e
=

rπ
1 + β

=
VT

(1 + β) IB
=

VT
IE

(25)

The T model of the BJT is shown in Fig. 5(b). The currents in both models are related by the
equations

i0c = gmvπ = βib = αi0e (26)

Simplified T Model

Figure 6 shows the T model with a Thévenin source in series with the base. We wish to solve for
an equivalent circuit in which the source i0c connects from the collector node to ground rather than
from the collector node to the B’ node.

The first step is to replace the source αi0e with two identical series sources with the common
node grounded. The circuit is shown in Fig. 7(a). The object is to absorb the left αi0e source into
the base-emitter circuit. For the circuit, we can write

ve = vtb − i0e
1 + β

(Rtb + rx)− i0ere = vtb − i0e

µ
Rtb + rx
1 + β

+ re

¶
(27)
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Figure 6: T model with Thévenin source connected to the base.

Let us define the resistance r0e by

r0e =
Rtb + rx
1 + β

+ re
or
=

Rtb + rx + rπ
1 + β

(28)

With this definition, ve is given by
ve = vtb − i0er

0
e (29)

Figure 7: (a) Circuit with the i0c source replaced by identical series sources. (b) Simplified T model.

The circuit which models Eq. (29) is shown in Fig. 7(b). We will call this the simplified T
model. It predicts the same emitter and collector currents as the circuit in Fig. 6. Note that the
resistors Rtb and rx do not appear in this circuit because they are contained in r0e.

Norton Collector Circuit

The Norton equivalent circuit seen looking into the collector can be used to solve for the response
of the common-emitter and common-base stages. It consists of a parallel current source ic(sc) and
a resistor ric from the collector to signal ground. Fig. 8(a) shows the BJT with Thévenin sources
connected to its base and emitter. To solve for the Norton equivalent circuit seen looking into the
collector, we use the simplified T model in Fig. 8(b).

By superposition of vc, αi0e, vtb, and vte, the following equations for ic and i0e can be written

ic =
vc

r0 + r0ekRte
+ αi0e −

vtb
r0e +Rtekr0

Rte

Rte + r0

− vte
Rte + r0ekr0

r0e
r0e + r0

(30)
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Figure 8: (a) BJT with Thevenin sources connected to the base and the emitter. (b) Simplified T
model.

i0e =
vtb

r0e +Rtekr0 −
vte

Rte + r0ekr0
− vc
r0 + r0ekRte

Rte

r0e +Rte
(31)

These can be solved to obtain

ic =
vtb

r0e +Rtekr0

µ
α− Rte

Rte + r0

¶
− vte

Rte + r0ekr0

µ
α+

r0e
r0e + r0

¶
+

vc
r0 + r0ekRte

µ
1− αRte

r0e +Rte

¶
(32)

This equation is of the form
ic = ic(sc) +

vc
ric

(33)

where ic(sc) and ric are given by
ic(sc) = Gmbvtb −Gmevte (34)

ric =
r0 + r0ekRte

1− αRte/ (r0e +Rte)
(35)

and Gmb and Gme are given by

Gmb =
1

r0e +Rtekr0

µ
α− Rte

Rte + r0

¶
or
=

α

r0e +Rtekr0
r0 −Rte/β

r0 +Rte
(36)

Gme =
1

Rte + r0ekr0

µ
α+

r0e
r0e + r0

¶
or
=

α

r0e +Rtekr0
r0 + r0e/α
r0 +Rte

(37)

The Norton equivalent circuit seen looking into the collector is shown in Fig. 9.
For the case r0 À Rte and r0 À r0e, we can write

ic(sc) = Gm (vtb − vte) (38)
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Figure 9: (a) Circuit for calculating ric. (b) Norton collector circuit.

Figure 10: (a) BJT with Thévenin source connected to the base. (b) T model circuit for calculating
ve(oc).

where
Gm =

α

r0e +Rte
(39)

The value of ic(sc) calculated with this approximation is simply the value of αi0e, where i0e is cal-
culated with r0 considered to be an open circuit. The term “r0 approximations” is used in the
following when r0 is neglected in calculating ic(sc) but not neglected in calculating ric.

Thévenin Emitter Circuit

The Thévenin equivalent circuit seen looking into the emitter is useful in calculating the response
of common-collector stages. It consists of a voltage source ve(oc) in series with a resistor rie from the
emitter node to signal ground. Fig. 10(a) shows the BJT symbol with a Thévenin source connected
to the base. The resistor Rtc represents the external load resistance in series with the collector.
To solve for the Thévenin equivalent circuit seen looking into the emitter, we use the simplified T
model in Fig. 10(b).

By superposition of vtb, ie, and αi0e, the following equations for ve and i0e can be written

ve = vtb
r0 +Rtc

r0e + r0 +Rtc
− ie

£
r0ek (r0 +Rtc)

¤
−αi0e

Rtcr0e
r0e + r0 +Rtc

(40)

i0e =
vtb − ve

r0e
(41)
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Figure 11: (a) Circuit for calculating ie(sc). (b) Thévenin emitter circuit.

These can be solved to obtain

ve

µ
1− αRtc

r0e + r0 +Rtc

¶
=

vtb
r0e + r0 +Rtc

[r0 + (1− α)Rtc]

−ier0ek (r0 +Rtc) (42)

which simplifies to

ve = vtb
r0 + (1− α)Rtc

r0e + r0 + (1− α)Rtc
− ie

r0e (r0 +Rtc)

r0e + r0 + (1− α)Rtc
(43)

This equation is of the form
ve = ve(oc) − ierie (44)

where ve(oc) and rie are given by

ve(oc) = vtb
r0 + (1− α)Rtc

r0e + r0 + (1− α)Rtc

or
= vtb

r0 +Rtc/ (1 + β)

r0e + r0 +Rtc/ (1 + β)
(45)

rie = r0e
r0 +Rtc

r0e + r0 + (1− α)Rtc

or
= r0e

r0 +Rtc

r0e + r0 +Rtc/ (1 + β)
(46)

The Thévenin equivalent circuit seen looking into the emitter is shown in Fig. ??.

Thévenin Base Circuit

Although the base is not an output terminal, the Thévenin equivalent circuit seen looking into the
base is useful in calculating the base current. It consists of a voltage source vb(oc) in series with a
resistor rib from the base node to signal ground. Fig. 12(a) shows the BJT symbol with a Thévenin
source connected to its emitter. Fig. 12(b) shows the Pi model for calculating the base voltage.

By superposition of vte, ib, and βib, treating each branch of βib seperately in the superposition,
we can write the following equation for vb

vb = vte
r0 +Rtc

Rte + r0 +Rtc
+ ib [rx + rπ +Rtek (r0 +Rtc)]

+βib
r0Rte

Rte + r0 +Rtc

= vte
r0 +Rtc

Rte + r0 +Rtc
+ ib

½
rx + rπ +Rtek (r0 +Rtc)

+β
r0Rte

Rte + r0 +Rtc

¾
(47)
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Figure 12: (a) BJT with Thevenin source connected to the emitter. (b) T model for calculating
vb(oc).

Figure 13: (a) Circuit for calculating vb. (b) Thévenin base circuit.

This equation is of the form
vb = vb(oc) + ibrib (48)

where vb(oc) and rib are given by

vb(oc) = vte
r0 +Rtc

Rte + r0 +Rtc
(49)

rib = rx + rπ +Rtek (r0 +Rtc)

+β
r0Rte

Rte + r0 +Rtc
or
= rx + (1 + β) re +Rtek (r0 +Rtc)

+β
r0Rte

Rte + r0 +Rtc
(50)

The equivalent circuit which models these equations is shown in Fig. 13.

The r0 Approximations

The r0 approximations approximate r0 as an open circuit in all equations except the one for ric.
In this case, the simplified T model reduces to the one shown in Fig. 14. Because r0 no longer
connects to the emitter, there is only one emitter current and i0e = ie. This circuit is very useful in
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Figure 14: Emitter equivalent circuit with the r0 approximations.

making rapid hand calculations and gives little error in most applications. If r0 = ∞, then ric is
an open circuit.

The equations for the Norton collector circuit and the Thévenin emitter and base circuits are
summarized as follows:

Norton Collector Circuit

ic(sc) = αie = Gm (vtb − vte) Gm =
α

r0e +Rte
(51)

ric =
r0 + r0ekRte

1− αRte/ (r0e +Rte)
(52)

Thévenin Emitter Circuit
ve(oc) = vtb rie = r0e (53)

Thévenin Base Circuit

vb(oc) = vte rib = rx + rπ + (1 + β)Rte
or
= rx + (1 + β) (re +Rte) (54)

Summary of Models

Figure 15: Summary of the small-signal equivalent circuits.
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Example Amplifier Circuits

This section describes several examples which illustrate the use of the small-signal equivalent circuits
derived above to write by inspection the voltage gain, the input resistance, and the output resistance
of both single-stage and two-stage amplifiers.

The Common-Emitter Amplifier

Figure 16(a) shows the ac signal circuit of a common-emitter amplifier. We assume that the bias
solution and the small-signal resistances r0e and r0 are known. The output voltage and output
resistance can be calculated by replacing the circuit seen looking into the collector by the Norton
equivalent circuit of Fig. 9(b). With the aid of this circuit, we can write

vo = −ic(sc) (rickRtc) = −Gmb (rickRtc) vtb (55)

rout = rickRtc (56)

where Gmb and ric, respectively, are given by Eqs. (??) and (??). The input resistance is given by

rin = Rtb + rib (57)

where rib is given by Eq. (??).

Figure 16: (a) Common-emitter amplifier. (b) Common-collector amplifier. (c) Common-base
amplifier.

The Common-Collector Amplifier

Figure 16(b) shows the ac signal circuit of a common-collector amplifier. We assume that the bias
solution and the small-signal resistances r0e and r0 are known. The output voltage and output
resistance can be calculated by replacing the circuit seen looking into the emitter by the Thévenin
equivalent circuit of Fig. 10(b). With the aid of this circuit, we can write

vo = ve(oc)
Rte

rie +Rte
=

r0 +Rtc/ (1 + β)

r0e + r0 +Rtc/ (1 + β)

Rte

rie +Rte
vtb (58)

rout = riekRte (59)

where rie is given by Eq. (??). The input resistance is given by

rin = Rtb + rib (60)

where rib is given by Eq. (??).
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The Common-Base Amplifier

Figure 16(c) shows the ac signal circuit of a common-base amplifier. We assume that the bias
solution and the small-signal parameters r0e and r0 are known. The output voltage and output
resistance can be calculated by replacing the circuit seen looking into the collector by the Norton
equivalent circuit of Fig. 9(b). The input resistance can be calculated by replacing the circuit seen
looking into the emitter by the Thévenin equivalent circuit of Fig. 10(b) with ve(oc) = 0. With the
aid of these circuits, we can write

vo = −ic(sc) (rickRtc) = Gme (rickRtc) vte (61)

rout = rickRtc (62)

rin = Rte + rie (63)

where Gme, ric, and rie, respectively, are given by Eqs. (??), (??), and (??).

The CE/CC Amplifier

Figure 17(a) shows the ac signal circuit of a two-stage amplifier consisting of a CE stage followed
by a CC stage. Such a circuit is used to obtain a high voltage gain and a low output resistance.
The voltage gain can be written

vo
vtb1

=
ic1(sc)
vtb1

× vtb2
ic1(sc)

× ve2(oc)
vtb2

× vo
ve2(oc)

= Gmb1 × [− (ric1kRC1)]× r0
r0e2 + r0

× Rte2

rie2 +Rte2
(64)

where r0e2 is calculated with Rtb2 = ric1kRC1. The input and output resistances are given by

rin = Rtb1 + rib1 (65)

rout = rie2kRte2 (66)

Although not a part of the solution, the resistance seen looking out of the collector of Q1 is
Rtc1 = RC1krib2.

Figure 17: (a) CE-CC amplifier. (b) Cascode amplifier.
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The Cascode Amplifier

Figure 17(b) shows the ac signal circuit of a cascode amplifier. The voltage gain can be written

vo
vtb1

=
ic1(sc)
vtb1

× vte2
ic1(sc)

× ic2(sc)
vte2

× vo
ic2(sc)

= Gm1 × (−ric1)× (−Gme2)× (−ric2kRtc2)

where Gme2 and ric2 are calculated with Rte2 = ric1. The input and output resistances are given
by

rin = Rtb1 + rib1

rout = Rtc2kric2
The resistance seen looking out of the collector of Q1 is Rtc1 = rie2.

A second cascode amplifier is shown in Fig. 18(a) where a pnp transistor is used for the second
stage. The voltage gain is given by

vo
vtb1

=
ic1(sc)
vtb1

× vte2
ic1(sc)

× ic2(sc)
vte2

× vo
ic2(sc)

= Gm1 × (−ric1kRC1)× (−Gme2)× (−ric2kRtc2)

The expressions for rin and rout are the same as for the cascode amplifier in Fig. 17(b). The
resistance seen looking out of the collector of Q1 is Rtc1 = RC1krie2.

Figure 18: (a) Second cascode amplifier. (b) Differential amplifier.

The Differential Amplifier

Figure 18(b) shows the ac signal circuit of a differential amplifier. For the case of an active tail bias
supply, the resistor RQ represents its small-signal ac resistance. We assume that the transistors
are identical, biased at the same currents and voltages, and have identical small-signal parameters.
Looking out of the emitter of Q1, the Thévenin voltage and resistance are given by

vte1 = ve2(oc)
RQ

RQ +RE + rie

= vtb2
r0 +Rtc/ (1 + β)

r0e + r0 +Rtc/ (1 + β)

RQ

RQ +RE + rie
(67)
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Rte1 = RE +RQk (RE + rie) (68)

The small-signal collector voltage of Q1 is given by

vo1 = −ic1(sc) (rickRtc) = − (Gmbvtb1 −Gmevte1) (rickRtc)

= −Gmb (rickRtc) vtb1

+Gme
r0 +Rtc/ (1 + β)

r0e + r0 +Rtc/ (1 + β)

RQ

rie +RE +RQ
vtb2 (69)

By symmetry, vo2 is obtained by interchanging the subscripts 1 and 2 in this equation. The small-
signal resistance seen looking into either output is

rout = Rtckric (70)

where ric calculated from Eq. (??) with Rte = RE +RQk (RE + rie). Although not labeled on the
circuit, the input resistance seen by both vtb1 and vtb2 is rin = rib.

A second solution of the diff amp can be obtained by replacing vtb1 and vtb2 with differential
and common-mode components as follows:

vtb1 = vi(cm) +
vi(d)
2

(71)

vtb2 = vi(cm) −
vi(d)
2

(72)

where vi(d) = vtb1−vtb2 and vi(cm) = (vtb1 + vtb2) /2. Superposition of vi(d) and vi(cm) can be used to
solve for vo1 and vo2. With vi(cm) = 0, the effects of vtb1 = vi(d)/2 and vtb2 = −vi(d)/2 are to cause
vq = 0. Thus the vq node can be grounded and the circuit can be divided into two common-emitter
stages in which Rte(d) = RE for each transistor. In this case, vo1(d) can be written

vo1(d) =
ic1(sc)
vtb1(d)

× vo1(d)
ic1(sc)

vtb1(d) = Gm(d) × (−rickRtc)
vi(d)
2

= Gm(d) × (−rickRtc)
vtb1 − vtb2

2
(73)

By symmetry vo2(d) = −vo1(d).
With vi(d) = 0, the effects of vtb1 = vtb2 = vi(cm) are to cause the emitter currents in Q1 and

Q2 to change by the same amounts. If RQ is replaced by two parallel resistors of value 2RQ, it
follows by symmetry that the circuit can be separated into two common-emitter stages each with
Rte(cm) = RE + 2RQ. In this case, vo1(cm) can be written

vo1(cm) =
ic1(sc)

vtb1(cm)
× vo1(cm)

ic1(sc)
vtb1(cm) = Gm(cm) (−rickRtc) vi(cm)

= Gm(cm) × (−rickRtc)
vtb1 + vtb2

2
(74)

By symmetry vo2(cm) = vo1(cm).
Because Rte is different for the differential and common-mode circuits, Gm and rib are different.

However, the total solution vo1 = vo1(d) + vo1(cm) is the same as that given by Eq. (69), and
similarly for vo2. Note that ric is the same for both solutions and is calculated with Rte = RE +
RQk (RE + rie). The small-signal base currents can be written ib1 = vi(cm)/rib(cm)+ vi(d)/rib(d) and
ib2 = vi(cm)/rib(cm)−vi(d)/rib(d). If RQ →∞, the common-mode gain is very small, approaching 0 as
r0 →∞. In this case, the differential solutions can be used for the total solutions. If RQ À RE+rie,
the common-mode solutions are often approximated by zero.
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Small-Signal High-Frequency Models

Figure 19 shows the hybrid-π and T models for the BJT with the base-emitter capacitance cπ and
the base-collector capacitance cµ added. The capacitor ccs is the collector-substrate capacitance
which in present in monolithic integrated-circuit devices but is omitted in discrete devices. These
capacitors model charge storage in the device which affects its high-frequency performance. The
capacitors are given by

cπ = cje +
τF IC
VT

(75)

cµ =
cjc

[1 + VCB/φC ]
mc

(76)

ccs =
cjcs

[1 + VCS/φC ]
mc

(77)

where IC is the dc collector current, VCB is the dc collector-base voltage, VCS is the dc collector-
substrate voltage, cje is the zero-bias junction capacitance of the base-emitter junction, τF is
the forward transit time of the base-emitter junction, cjc is the zero-bias junction capacitance of
the base-collector junction, cjcs is the zero-bias collector-substrate capacitance, φC is the built-in
potential, and mc is the junction exponential factor. For integrated circuit lateral pnp transistors,
ccs is replaced with a capacitor cbs from base to substrate, i.e. from the B node to ground.

Figure 19: High-frequency small-signal models of the BJT. (a) Hybrid-π model. (b) T model.

In these models, the currents are related by

i0c = gmvπ = βi0b = αi0e (78)

These relations are the same as those in Eq. (26) with ib replaced with i0b.
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