EEG 808 Electronic Devices, Modelling and Circuit Simulation

Dr A Ogunsola

Tutorial 1

Question 1

An Si *npn* transistor at 300 K has an area of 1 mm², base width of 1.0 µm, and doping of $N_{de}=10^{18}$ cm⁻³, $N_{ab}=1017$ cm⁻³, $N_{dc}=10^{16}$ cm⁻³. The minority carrier lifetimes are $\tau_E=10^{-7}=\tau_B$; $\tau_C=10^{-6}$ s. Calculate the collector current in the active mode for (a) $V_{BE}=0.5$ V, (b) $I_E=2.5$ mA, and (c) $I_B=5$ µA. The base diffusion coefficient is $D_b=20$ cm²s⁻¹.

Question 2

An *npn* silicon transistor is operated in the inverse active mode (i.e., collector-base is forward biased and emitter base is reverse biased). The doping concentrations are $N_{de} = 10^{18}$ cm⁻³; $N_{ab} = 10^{17}$ cm⁻³, and $N_{dc} = 10^{16}$ cm⁻³. The voltages are $V_{BE} = -2$ V, $V_{BC} = 0.6$ V. Calculate and plot the minority carrier distribution in the device. Also calculate the current in the collector and the emitter. The device parameters are: $W_b = 1.0 \ \mu m$, $\tau_E = \tau_B = \tau_C = 10^{-7} s$, $D_b = 20 \ cm^2 s^{-1}$, $D_e = 10 \ cm^2 s^{-1}$, $D_c = 25 \ cm^2 s^{-1}$, $A = 1 \ mm^2$.

Question 3

The $V_{CE}(sat)$ of an npn transistor decreases as the base current increases for a fixed collector current. In the Ebers-Moll model, assume $\alpha_F = 0.995$, $\alpha_R = 0.1$, and $I_C = 1.0$ mA. At 300 K, at what base current is the $V_{CE}(sat)$ value equal to (a) 0.2 V, (b) 0.1 V?

Question 4

Consider a npn Si-BJT at 300 K with the following parameters:

Nde = 10^{18} cm⁻³ Nab = 10^{17} cm⁻³ Ndc = 10^{16} cm⁻³ Db = 30.0 cm²s⁻¹ Lb = $10.0\mu m$ Wb = $1.0\mu m$ De = $10cm^2s^{-1}$ Le = $10.0\mu m$ emitter thickness = 1.0 μm device area = 4.0×10^{-6} cm

(a) Calculate the emitter efficiency and gain β when the EBJ is forward biased at 1.0 V and the BCJ is reverse biased at 5.0 V. (b) Calculate the output conductance of the device defined by