Microwave Engineering and Antenna – EEG 815 Tutorial 1

QUESTION 1

A hypothetical isotopic antenna is radiating in free space. At a distance of 100m from the antenna, the total electric field E_{ϕ} is measured to be 5V/m.

- a) Find the power density W_{rad}
- b) Determine the power radiated P_{rad}

QUESTION 2

The maximum of the radiation pattern of a horn antenna is +20 dB, while maximum of is first side-lobe is -15 dB. What is the difference between the two maxima

- a) in dB,
- b) as a ratio of the field intensities

QUESTION 3

A thin linear dipole of length $\it l$ is placed symmetrically about the z-axis. Find the far-zone spherical electric and magnetic components radiated by the dipole whose current distribution can be approximated by

a)
$$I_{z}(z') = \begin{cases} I_{0}\left(1 + \frac{2}{l}z'\right) & -l/2 \le z' \le 0 \\ I_{0}\left(1 - \frac{2}{l}z'\right) & 0 \le z' \le l/2 \end{cases}$$

b)
$$I_z(z') = I_0 \cos\left(\frac{\pi}{l}z'\right) \qquad -l/2 \le z' \le l/2$$

c)
$$I_z(z') = I_0 \cos^2\left(\frac{\pi}{l}z'\right) \qquad -l/2 \le z' \le l/2$$

Microwave Engineering and Antenna – EEG 815 Tutorial 1

QUESTION 4

A dipole antenna, with a triangular current distribution, is used for communication with submarines at a frequency of 150 kHz. The overall length of the dipole is 200m, and its radius is 1 m. Assume a loss of resistance of 2 Ω in series with the radiation resistance of the antenna.

1. Evaluate the input impedance of the antenna including the loss resistance. The input reactance can be approximated by

$$X_{in} = -120 \frac{\left(\ln\left(\frac{l}{2a}\right) - 1\right)}{\tan\left(\frac{\pi l}{\lambda}\right)}$$

- 2. Evaluate the radiation efficiency of the antenna
- 3. Evaluate the radiation power factor $\frac{R_{in}}{X_{in}}$ of the antenna
- 4. Design a conjugate matching network to provide a perfect match between the antenna and a 50 Ω transmission line. Give the value of the series reactance X and the turns ratio n of the ideal transformer
- Assuming a conjugate match, evaluate the instantaneous 2:1 VSWR bandwidth of the antenna.