Microwave Engineering and Antenna - Tutorial 2

Question 1

A uniform plane wave is propagating in direction of the positive z-axis. Find the polarization (linear, circular, or elliptical), sense of rotation (CW or CCW), axial ratio (AR), and tilt angle τ (in degrees) for

a)
$$E_x = E_y$$
 and $\Delta \phi = 0$

b)
$$E_x \neq E_y$$
 and $\Delta \phi = 0$

c)
$$E_x = E_y$$
 and $\Delta \phi = \frac{\pi}{2}$

d)
$$E_x = E_y$$
 and $\Delta \phi = -\frac{\pi}{2}$

Question 2

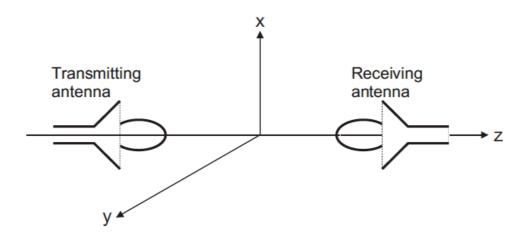
A linearly polarized wave traveling in the negative z -direction has a tilt angle τ of 45 degrees. It is incident upon an antenna whose polarization characteristics are given by

$$\overline{\rho_a} = \frac{4\overline{a_x} + j\overline{a_y}}{\sqrt{17}}$$

Find the polarization loss factor (PLF) dimensionless and in dB.

Question 3

The normalized E field pattern o fan antenna, independent of frequency, varies as follows:


$$\frac{E}{E_0} = \begin{cases} 1 & 0^{\circ} \le \theta \le 45^{\circ} \\ 0 & 45^{\circ} \le \theta \le 90^{\circ} \\ \frac{1}{2} & 90^{\circ} \le \theta \le 180^{\circ} \end{cases}$$

- **a)** What is the directivity of this antenna?
- **b)** What is the radiation resistance of the antenna at 200 m from it if the field is equal to 10 V/m (rms) from $\theta = 0^{\circ}$ at the distance and the terminal current is 5 A (rms)?

Question 4

Microwave Engineering and Antenna - Tutorial 2

A right-hand circularly polarized horn antenna is used as a transmitter in a radio link. The antenna is fed by a 50 Ω line, and radiates (at output) 5 W of power at 2 GHz. The gain of the antenna is 30 dBi, its radiation resistance 47 Ω and loss resistance 5 Ω . The receiving antenna is 95% efficient and has an impedance mismatch at its terminals, which leads to a VSWR of 1.7. The receiving antenna is CW elliptically polarized with tilt angle of 0° and axial ratio (AR) of 2. The distance between the two antennas is 3500 km, and the receiving antenna is required to deliver $0.5 \, \text{pW}$ to the receiver.

- a) Calculate the total efficiency of the transmitting antenna
- b) Calculate the power density incident on the receiving antenna
- c) Find the polarisation loss factor
- d) Determine the maximum effective aperture of the receiving antenna