Microwave Engineering and Antenna – Tutorial 3

Question 1

A very short ($l \le \lambda/50$) vertical electric dipole is mounted on a pole a height h above the ground, which is assumed to be flat, perfectly conducting, and on infinite extent. The dipole is used as a transmitting antenna in a VHF ($f = 50\,\mathrm{MHz}$) ground-to-air communication system. In order for the communication system transmitting antenna signal not to interfere with a nearby radio station, it is necessary to place a null in the vertical dipole system pattern at an angle of 80° from the vertical. What should the shortest height (in meters) of the dipole be to achieve the desired specifications?

Question 2

A resonant, $\lambda/50$ dipole is placed a distance h above an infinite ground plane $(\sigma = \infty)$ so that the beam peak in the elevation plane $(\phi = 0^{\circ})$ is at 30° . The dipole is made out of copper wire $(\sigma = 5.7 \cdot 10^{7} \text{ S/m})$ of radius $1.5 \cdot 10^{-4} \lambda$.

Find

- a) height h,
- b) directivity in dB,
- c) gain in dB at frequency f = 250 MHz,
- d) reflection efficiency, if the dipole is fed by a 50 Ω line.

Microwave Engineering and Antenna – Tutorial 3

Question 3

A monopole antenna is placed on an infinite conducting ground plane as shown in the figure below. Its current distribution is triangular, i.e. $I_z(z) = I_0 \left(1 - z/h \right)$. The length of the monopole is h = 10 mm and the frequency is $f = 0.3\,\mathrm{GHz}$.

- a) Find the far-field of the antenna.
- Find the radiation resistance.
- Find the maximum directivity.

Now consider a dipole working at 600 MHz with the same length ($L=10\,\mathrm{mm}$), placed at a distance h from the ground plane. The length L is such that the dipole can be considered infinitesimal with a uniform current distribution I_0 .

d) Determine the minimum distance h required for the radiation pattern to have a null in the direction $\phi = 90^{\circ}$ and $\theta = 45^{\circ}$.

Microwave Engineering and Antenna – Tutorial 3

Question 4

A resonant 6-turn loop of "closely spaced turns" is operating at 50 MHz. The radius of the loop is $\lambda/30$, and the loop is connected to a 50- Ω transmission line. The radius of the wire is $\lambda/300$, its conductivity is $\sigma=5.7\cdot10^7\,\mathrm{S/m}$, and the spacing between the turns is $\lambda/100$. Determine the

- a) directivity of the antenna (in dB),
- b) radiation efficiency taking into account the proximity effects of the turns,
- c) reflection efficiency,
- d) gain of the antenna (in dB).