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Intrinsic carrier density

Intrinsic carrier density

Law of mass action
Valid also if  we add an impurity which either donates extra electrons or holes the

number of carriers remains constant for a given temperature



Doping

Donor levels lie just below conduction band and acceptor levels just above the valence
band

Donor levels lie ED below the bottom of the conduction band and acceptor levels EA
above the valence band

Since Ea and Ed are smaller than kT at room temperature  the dopant sites are fully
ionised so the number of majority carrier (those provided by doping, electrons in
the case of n-type, holes in the case of p-type) is simply the number of dopant atoms
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Electron and hole concentrations

Recalling the expression for the Fermi energy

And the law of mass action



Temperature dependence II

Initial rise as dopant sites become fully ionised
Flat region where majority of carriers are from the dopant (good for devices)
Final rise where intrinsic behaviour dominates



Conduction

If we apply an electric field electrons and holes accelerate until they are scattered
We can define an average drift velocity v in terms of the mean time between scattering

events

This is a completely classical description but we can bring in quantum effects by
replacing the electron mass with the effective mass

Current density J is then

Conductivity is given by



Conductivity

For a metal

Recognise the second part of the RHS is the mobility
For semiconductors we have more than one type of carrier with more than one

mobility electrons and holes have different effective masses and may have different
lifetimes



Conductivity II

Reason for separating the conductivity into mobility and carrier density
In semiconductors both carrier density and mobility are temperature dependent in
metals only the mobility is
We have generally at least two types of carrier and we may have even more



Mobility

The mobile carriers in a semiconductor have an average of 3/2 kT of thermal energy

Vth=107 cm/s
they undergo regular collisions with defects and phonons  mean free path of 10-5 cm

lifetime of 1 ps

If an electric field is applied then the carriers will begin to accelerate until they are
scattered



Various contributions

Lattice scattering gives mobility a T-3/2 dependence (more phonons at higher T so less
mobility)

Impurity scattering has a T3/2 effect carriers spend less time near to impurity sites

Also principal impurity sites are the dopant atoms so the more carriers we put in by
increasing the doping then the less mobile these carriers are



Hall Effect

For a conductor passing a current in a magnetic field there is a force on the moving
current perpendicular to both the current and the magnetic field directions.

Since the carriers cannot escape from the wire a voltage develops which counteracts
this force — the Hall voltage

For a single carrier type



Hall Effect II

But by definition the hall coefficient RH is

Substitution for Ey and Jx

Cancel through and have

A simple way to measure the carrier density and type since q includes the sign of the
carriers (-ve for electrons +ve for holes) ?



Hall Effect in Semiconductors

Now have to consider two types of carrier consider the y component of the current
density jy

So

But

Setting jy=0



Hall Effect in Semiconductors II

So RH is

 Hall Effect appears to depend on mobility (counter intuitive)

Might expect

This is what Sze quotes as the Hall coefficient



The general case and limiting cases

Our model considered only the carrier velocity produced by the applied electric field
In general the carriers have a thermal velocity and will tend to spiral about the

magnetic field our model works only if

In general

For small B the terms in B2 go to zero and we recover our original result

For large B the B2 terms dominate and we  find the naïve simple view of the Hall
coefficient holds



Hall effect in intrinsic semiconductors

Implies that in general intrinsic semiconductors where n=p will have a Hall effect

But at high  fields this will go to



Carrier Diffusion

Up to now we have considered equilibrium
thermal properties and the effects of
external fields now turn to effects
of concentration gradients

Imagine a semiconductor whose electron
density varies spatially

The electron mean free path=l
Where

Flow of electrons across a plane at x=0 from
left

Flow of electrons across a plane at x=0 from
right



Carrier Diffusion II

Net flow

Replace n(-l) and n(l) by taylor expansion about n(0)

Each carrier carries a charge and so carrier diffusion gives rise to a current



Einstein relation

Equipartition for a 1-D case implies

and given

Einstein relationship relating two transport properties
Diffusivity (freedom of electrons to move under concentration gradients)
and mobility (freedom of electrons to move under electric field)



Current density equations

In general we have currents flowing because of both concentration gradients and
electric fields

For electrons

For holes

The total conductivity



Carrier injection

So far we have considered cases where the semiconductor is in thermal equilibrium (at
least locally) and the law of mass action holds

Non-equilibrium case
We can inject extra carrier by various methods

by shining light on the material
by biasing a pn junction

Magnitude of the number of carriers determines the level of injection



Carrier injection by light

Since a photon creates an electron hole pair ∆p= ∆n
Case of n-doped silicon where ND=1015 cm-3 and ni=1010 cm-3 n=1015 cm-3 , p= 105 cm-3

If we inject ∆p=∆n=1012 cm-3

Increase p by 7 orders of magnitude
Increase n by 1%
Low level injection affects only

 minority carrier concentration

If ∆p=∆n=1017 cm-3

Overwhelm the equilibrium majority
carrier concentration

High level injection



Direct recombination

Injected carriers are a non-equilibrium phenomenon and are removed by
recombination of electron hole pairs

In a direct gap (like GaAs semiconductor this occurs directly electrons
and holes simply combine and annihilate
(sometimes with the emission of a photon)

Recombination rate is proportional to the concentration of holes and electrons

For thermal equilibrium case where carrier concentrations are constant



Direct recombination II

Rates of recombinatioon and generation are thus

Rate of change of hole concentration is given by

For steady state define U the net recombination rate U=R-Gth=Gl

Recalling ∆n= ∆p
For low level injection where∆p and pno are small compared to nno

Recombination rate is proportional to excess minority carrier concentration



Direct recombination III

Like a first order chemical reaction rate depends on one reactant

Also because

Minority carrier lifetime is controlled by majority carrier concentration



Indirect recombination

For indirect band gap semiconductors like silicon
direct recombination is rare  because have to lose
crystal momentum as well as energy
instead recombination occurs indirectly via trapping states
(defects and impurities)

Four possible processes
(a) Trapping of an electron

(b) Emission of a trapped
electron

(c) Combination of
a trapped electron and
a hole

(d) Formation of a trapped
electron and free hole
pair



Indirect recombination II

The rate at which electrons are trapped is proportional to the number of
electrons n and the number of non-occupied trapping states. The
probability that a state occupied is given by the Fermi function

Rate will then be proportional to

Or

Where the constant of proportionality is given as the electron thermal velocity
times a cross section for the trapping atom (of order 10-15 cm2)

Can imagine this as the volume swept by the electron in unit time. If an unfilled
trapping state lies in this volume the electron is trapped



Indirect recombination III

Rate of emisson of the electron from the trapped state

For thermal equilibrium Ra=Rb so the emission probability en

But

And

so



Hole annihilation and creation

The rate of hole annihilation by a filled trapping state is
analogously

And the rate of hole emission is

Where ep is the emission probability which can be obtained from the thermal
equilibrium condition Rc=Rd



Net recombination rate

For steady state number of electrons leaving and entering the CB
are equal

Principle of detailed balance
Similarly for holes in VB

Combining

Substituting for Ra etc gives



Net recombination rate

Solve this for F and then substitute back to get a net recombination rate

Horrible expression but can simplify since for low-level injection nn >> pn  and since the
trapping states are near the centre of the gap

Same form as for direct gap semiconductors but

Minority carrier lifetime is now controlled by density of trapping
states not majority carrier concentration



Energy dependence of recombination

Can also simplify this equation by assuming that the electron and hole cross sections
are equal

Under low injection conditions this approximates to

Where the recombination lifetime



Carrier depletion

Can also perturb from equilibrium by removing carriers
Setting pn and nn< ni

Becomes

With the generation lifetime



Continuity equation

We have seen the ways carriers can move under applied field and concentration
gradients and that the can be created and destroyed but in general all these
processes occur together

If we consider a slice of semiconductor of width dx then  rate of change of the carrier
density will be the sum of the currents entering from each surface and the overall
generation and recombination rates.



Continuity equation II

Expand currents as Taylor series

Substitute in for various forms of current and for minority carriers this becomes



Continuity equation III

We must also satisfy Poisson’s equation

Where the charge density is the sum of the hole, electron, and ionised donor and
acceptor densities taking into account their relative charges.

In general the continuity equation is difficult to solve analytically but it can be done for
some special cases



Light falling on a semiconductor

Steady state with no electric fields

For the infinite case pn(0)=constant and pn(∞)= pno

diffusion length



Extraction case

If we extract all minority carriers at a distance W the boundary condition becomes
pn(W)= pno

Diffusion current density at x=W


