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CHAPTER II 

Recurrent Neural Networks 
 
In this chapter first the dynam ics of the c ontinuous space recurrent neural networks will 

be examined in a general fram ework. Then, the Hopf ield Network as a special case of  

this kind of networks will be introduced. 

 

2.1.  Dynamical Systems 
 

The dynamics of a large class of neural network m odels, may be represented by a set of 

first order differential equations in the form  

 

  NjtxtxtxtxFtx
dt
d

Njj ..1))(),..,(),..,(),(()( 121 ==  (2.1.1) 

 

where Fj is a nonlinear function of its argument.  

 

In a more compact form it may be reformulated as 

 

 ))(()( tt
dt
d xFx =        (2.1.2) 

 

where the nonlinear function F operates on elem ents of the state vector x(t) in an 

autonomous way, that is F(x(t)) does not depend explicitly  on tim e t. F(x) is a vector 
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field in an N-dimensional state space. Such an equation is called state space equation and 

x(t) is called the state of the system at particular time t. 

 

In order the state space equation (2.1.2) to ha ve a solution and the solution to be unique, 

we have to im pose certain rest rictions on the vector function F(x(t)). For a solution to 

exist, it is suf ficient that F(x) is continuous in all of its argum ents. However, this 

restriction by itself does not guarantee the uni queness of the solution, so we have to 

impose a further restriction, known as Lipschitz condition.  

 

Let ||x|| denotes a norm , which m ay be the Euclidean length,  Ham ming distance or any 

other one, depending on the purpose.  

 

Let x and y be a pair of vectors in an open set , in vector space. Then according to the 

Lipschitz condition, there exists a constant κ such that 

 

 || F(x) - F(y)|| ≤  κ|| x - y ||      (2.1.3) 

 

for all x and y in . A vector F(x) that satisf ies equation  (2.1.3) is said to be Lipschitz. 

Note that Eq. (2.1.3) also im plies continuity of the function with respect to  x. Therefore, 

in the case of autonom ous systems the Lipschitz condition guarantees both the existence 

and uniqueness of solutions for the state space equa tion (2.1.2). In particular, if all partial 

derivatives ∂ Fi(x)/∂xj are finite everywhere, then the function F(x) satisfies the Lipschitz 

condition [Haykin 94]. 

 

Exercise: Compare the definitions of Euclidean length and Hamming distance 

 

2.2. Phase Space  
 

Regardless of the exact form  of the nonlinear function F, the state vector x(t) varies with 

time, that is the point representing x(t) in N dimensional space, changes its position in 
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time. While the behavior of x(t) may be thought as a flow, the vector function F(x), may 

be thought as a velocity vector in an abstract sense.   

 

For visualization of the m otion of the states in time, it may be helpful to use phase space 

of the dynam ical system, which describes the global characteristics of the m otion rather 

than the detailed aspects of analytic or numeric solutions of the equation.  

 

At a particular instant of  tim e t, a single point in the N-dimensional phase space 

represents the observed state of  the state vector, that is x(t). Changes in the state of the 

system with time t are represented as a curve in the phase space, each point on the curve 

carrying (explicitly or im plicitly) a label that records the time of observation. This curve 

is called a trajectory or orbit of  the system . Figure 2.1.a. illustrates a trajectory in a two 

dimensional system.  

 

The family of trajectories, each of wh ich being for a different initial condition x(0), is 

called the phase portrait of the system (Figure 2.1.b). The phase portrait includes all those 

points in the phase space where the field vector F(x) is defined. For an autonom ous 

system, there will be one and only one trajectory passing through an initial state 

[Abraham and Shaw 92, Haykin 94]. The tangent vector, that is d x(t)/dt, represents the 

instantaneous velocity F(x(t)) of the trajectory. W e may thus derive a velocity vector for 

each point of the trajectory.  

 
 

 

 

 

 

 

 

 

Figure 2.1. a) A two dimensional trajectory  b) Phase portrait 
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2.3. Major forms of Dynamical Systems  
 

For fixed weights and inputs, we disti nguish three m ajor form s dynam ical system , 

[Bressloff and W eir 91]. Each is characterized by the behavior of the network when t is 

large, so that any transients are assum ed to have disappeared and the system  has settled 

into some steady state (Figure 2.2): 

 
Figure 2.2.  Three major forms of dynamical systems 

a) Convergent    b) Oscillatory     c) Chaotic 
 

a) Convergent: every trajectory x(t) converges to som e fixed point, which is a state that 

does not change over tim e (Figure 2.2.a). Thes e fixed points are called the attractors of 

the system. The set of  initial states x(0) that evolves to a particular attractor is called the 

basin of attraction. The locations of the attractors and the basin boundaries  change as the 

dynamical system  param eters change.  For ex ample, by altering the external inputs or 

connection weights in a recurrent neural netw ork, the basin attraction of the system  can 

be adjusted.  

 

b) Oscillatory: every trajectory converges either to a cycle or to a fixed point. A cycle of 

period T satisfies x(t+T)=x(t) for all times t (Figure 2.2.b) 

 

c) Chaotic: m ost trajectories do not tend to cy cles or fixed points. One of the 

characteristics of chaotic system s is that the long-term  behavior of trajectories is 
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extremely sensitive to initial conditions. That is, a slight change in the initial state x(0) 

can lead to very different behaviors, as t becomes large.   

 

 

2. 4. Gradient, Conservative and Dissipative Systems  
 

For a vector field F(x) on state space x(t) ∈RN,  the ∇ operator helps in f ormal 

description of the system. In fact, ∇ is an operational vector defined as: 

 

 ∇=[ ∂
∂

∂
∂

∂
∂x x xN1 2

]. (2.4.1) 

 

If the ∇ operator applied on a scalar function E of vector x(t), that is 

 

 ∇E=[∂ ∂
∂

∂
∂

∂
E

x
E

x
E

xN1 2
... ]. (2.4.2) 

 

is called the gradient of the function E and extends in the direction of the greatest rate of 

change of E and has that rate of change for its length.  

 

If we set E(x)=c, we obtain a family of surfaces known as level surfaces of  E, as x takes 

on different values. Due to the assum ption that E is single valued at each point, one and 

only one level surface passes through any gi ven point P [W ylie and Barret 85]. The 

gradient of E(x) at any point P is perpendicular to the level surface of E, which passes 

through that point. (Figure 2.3) 

 

For a vector field  

  F(x)=[F F FN1 2( ) ( ) ... ( )x x x ]T  (2.4.3) 
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Figure 2.3 a) Energy landscape b) a slice c) level surfaces d)  (-) gradient  
 

 

 

the inner product 
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 ∇.F= ∂
∂

∂
∂

∂
∂

F
x

F
x

F
x

N

N

1

1

2

2
+ + +.. .  (2.4.4)  

 

is called the divergence of  F, and it has a scalar value. 

 

Consider a region of volum e V and surface S in the phase space of an autonom ous 

system, and assum e a flow of points from  th is region. From  our earlier discussion, we 

recognize that the velocity vector dx/dt is equal to the vector f ield F(x). Provided that the 

vector field F(x) within the volum e V  is "well be haved", we m ay apply the divergence 

theorem from the vector calculus [W ylie and Barret 85, Haykin 94]. Let n denote a unit 

vector norm al to the surface at dS pointing outward from  the enclosed volum e. Then, 

according to the divergence theorem, the relation 

 

 dVdS
VS

))(.()).(( xFnxF ∇=∫∫    (2.4.5)  

 

holds between the volum e integral of the divergence of F(x) and the surface integral of 

the outwardly directed norm al component of F(x). The quantity on the lef t-hand side of  

Eq. (2.4.5) is recognized as the net flux flowing out of the region surrounded by the 

closed surface S. If the quantity is zero, the system  is conservative; if it is negative, the 

system is dissipative. In the light of  Eq. (2.4.5), we m ay state equivalently that if  the 

divergence  

 

 ∇⋅ =F x( ) 0  (2.4.6)  

 

then the system is conservative and if  

 

 ∇⋅ <F x( ) 0  (2.4.7) 

 

the system is dissipative, which implies the stability of the system [Haykin 94]. 
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2.5. Equilibrium States  
 

A constant vector x* satisfying the condition  

 

 F x 0( *) = ,  (2.5.1) 

 

is called an equilibrium state (stationary state or fixed point) of the dynam ical system 

defined by Eq. (2.1.2). Since it results in 

 

 N1ifor
xdt

dxi ..0
*

== , (2.5.2) 

 

the constant function x(t)=x* is a solution of the dynam ical system . If the system  is 

operating at an equilibrium  point, then the st ate vector stays constant, and the trajectory 

with an initial state x(0)=x* degenerates to a single point.  

 

We are frequently interested in the behavior  of the system around the equilibrium points, 

and try to investigate if the trajectories around the equilibrium  points are converging to 

the equilibrium  point, diverging from  it or staying in an orbit around the point or 

combination of these. 

 

The use of a linear approxim ation of the nonlinear function F(x) m akes it easier to 

understand the behavior of the system   around the equilibrium  points. Let x=x*+∆x be a 

point around x*. If the nonlinear function F(x) is sm ooth and if the disturbance ∆x is 

small enough then it can be approxim ated by the first two terms of its Taylor expansion 

around x* as: 

 

 F x x F x F x x( * ) ( *) ( *)+ ≅ + ′∆ ∆       (2.5.3) 
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 where  

 

 F x
x

F
x x

' ( *)
*

=
=

∂
∂

 (2.5.4) 

 

that is, in particular: 

 

 ′ =
=

F
F

xij
j

i
( *)

( )

*
x

x

x x

∂

∂
. (2.5.5) 

 

Notice that  F(x*) and F '(x*) in Eq. (2.5.3) are constant, therefore it is a linear equation 

in terms of ∆x. 

 

Furthermore, since an equilibrium point satisfies Eq. (2.5.1), we obtain 

  

 F x x F x x( * ) ( *)+ ≅ ′∆ ∆  (2.5.6) 

 

On the other hand, since 

 

 d
dt

d
dt

( * )x x x+ =∆ ∆   (2.5.7) 

 

the Eq. (2.1.2) becomes  

 

 d
dt
∆ ∆x F x x= ′( *)         (2.5.8) 

 

Since Eq. (2.5.8) defines a hom ogenous diffe rential equation with constant real 

coefficient, the eigenvalues of the matrix  F '(x*) determines the behavior of the system. 
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Exercise: Give the general form of the solution of the system defined by Eq. (2.5.8)  

 

Notice that, in order to have ∆x(t) to diminish as t→∞,  we need  the real parts of  all the 

eigenvalues to be negative. 

 

2.6. Stability 
 

An equilibrium state x* of an autonomous nonlinear dynamical system is called stable, if 

for any given positive ε, there exists a positive δ satisfying,  

                       

 ||x(0)-x*|| < δ ⇒  ||x(t)-x*|| < ε  for all  t >0. (2.6.1) 

 

If x* is a stable equilibrium  point, it m eans that any trajectory described by the state 

vector x(t) of the system  can be m ade to st ay within a sm all neighborhood of the 

equilibrium state x* by choosing an initial state x(0) close enough to x*. 

 

An equilibrium point  x* is said to be asymptotically stable if it is also convergent, where 

convergence requires the existence of  a positive δ such that  

 

 ||x(0)-x*|| < δ ⇒ =→∞lim ( ) *t tx x .  (2.6.2) 

 

If the equilibrium point is convergent, th e trajectory can be m ade approaching to x* as t 

goes to infinity, by choosing again an initial state x(0) close enough to x*. Notice that 

asymptotically stable states correspond to attractors of the system. 

 

For an autonomous nonlinear dynamical system the asymptotic stability of an equilibrium 

state x* can be decided by the existence of energy functions. Such energy functions are 

called also as Liapunov functions since th ey are discovered by Alexander Liapunov in 

the early 1900s to prove the stability of differential equations. 
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A continuous function L(x) with a continuous time derivative L'(x)=dL(x)/dt is a definite 

Liapunov function if it satisfies: 

a) L(x) is bounded   

b) L'(x) is negative definite, that is: 

 

 L'( x)<0 for x≠x* (2.6.3) 

 

and 

 

 L'( x)=0 for x=x* (2.6.4)  

 

 

If the condition  (2.6.3) is in the form 

  

 *for0)(L' xxx ≠≤  (2.6.5) 

 

the Liapunov function is called semidefinite. 

 

Having defined the Liapunov function, the st ability of an equilibrium  point can be 

decided by using the following theorem:  

 

Liapunov's Theorem: The equilibrium state x* is stable (asymptotically stable), if there 

exists a semidefinite (definite) Liapunov function in a small neighborhood of  x*. 

 

The use of Liapunov functions m akes it possibl e to decide the stability of equilibrium  

points without solving the state-space equation of the system. Unfortunately there is not 

any formal way to find a Liapunov function, m ostly it is determ ined in a trial and error 

fashion. If we are able to  find a Liapunov function, then we state the stability of the 

system. However, the inability to find a Li apunov function, does not imply the instability 

of the system.  
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Often convergence of neural networks is guaranteed by introducing an energy function 

together with the network its elf. In fact the energy functions are Liapunov functions, so 

they are non-increasing along trajectories. Ther efore the dynamics of the network can be 

visualized in term s of some multidimensional 'energy landscapes' as given previously in 

Figure 2.3. The attractors of the dynam ical sy stem are the local m inima of the energy 

function surrounded with 'valleys' corresponding to the basins of attraction (Figure 2.4). 

 

 

Figure 2.4. Energy landscape and basin attractions 

 

2.7. Effect of input and initial state on the attraction  
 

The convergence of a network to an attractor  of the activation dynam ics may be viewed 

as a retrieval process in which the fixed point  is interpreted as the output of the neural 

network. As an example consider the following network dynamic: 

 

 )()()( i
j

jjiiii xwftxtx
dt
d θ++−= ∑  (2.7.1) 
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Assume that the w eight matrix W is fixed and the netw ork is specified through θ and 

initial state x(0). Both θ and x(0) are ways of introducing an input pattern into the  

network, although  they play distinct dynamical roles [Bressloff and Weir 91].  

 

We then distinguish two m odes of operati on, depending on whether network has fixed 

x(0) but θ=u or it has fixed θ but x(0)= u. In the first case, the vector u acts as input and 

the initial state is set to som e constant vector  for all inputs. In general, the value of the 

attractors vary sm oothly as the vector u is varied, hence the network provides a 

continuous mapping between the input and the output spaces (Figure 2.5.a). However this 

will breakdown if, for exam ple, the initial point x(0) crosses the boundary of a basin 

attraction for some input. Such a scenario can be avoided by making the network globally 

convergent, which means that all the trajectories converge to a unique attractor. 

 

In such a netw ork, if  the initial state is not  set to the sam e f ixed vector, it m ay give 

different responses to the sam e input pa ttern on different occasions. Although such a 

feature m ay be desirable when considering tem poral sequences, it m akes the network 

unsuitable as a classifier.  

 
Figure 2.5. Both external input u and initial value x(0) has  effects the final state 

a) The same initial value x(0) may result in different fixed points as final value for different u 
b) Different x(0) may converge to different fixed values although u is the same 

 

In the second mode of operation, the input pattern is presented to the network through the 

initial state x(0) w hile θ is kept  fixed. The attractors of the dynam ics m ay be used to 
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represent item s in a m emory w hile the initial states are the stim ulus to rem ember the 

stored memory items. The initial states that contain incomplete or erronous inform ation 

may be considered as queries to the m emory. The network then converges to the 

complete memory items that best f its the stimulus (Figure 2.5.b). Thus in contrast to the 

first mode of operation, which ideally uses a globally convergent network, this form  of 

operation exploits the fact that there are m any basins of attraction to act as a content 

addressable memory. However, as a result of inappropriate choices for the weights, there 

may be a com plication arising from  the fixe d points of the network where the m emory 

items are indented to reside. Although the in tention is to have fixed points corresponding 

only to the stored m emory items, it m ay a ppear undesired fixed points called spurious 

states [Bresloff and Weir 91]. 

 

2.8 Cohen-Grossberg Theorem   

 
The idea of using energy functions to anal yze the behavior neural networks was 

introduced during the first half of the 1970s independently in   [Am ari 72], [Grossberg 

72] and [Little 74]. A general principle, know n as Cohen-Grossberg theorem is based on 

the Grossberg' s studies during the previous  decade.   As described in [Cohen and 

Grossberg 83] it is used to decide the stability of a certain class of neural networks.  

 

Theorem: Consider a neural network with N processing elem ents having output signals 

fi(ai) and transfer functions of the form 

 

 d
dt

a a a w f a i Ni i i i i ji j j
j

n
= − =

=
∑α β( )( ( ) ( )) ..

1
1  (2.8.1) 

 

satisfying constraints: 

1) Matrix W=[wij] is symmetric, that is wij=wji, and all wij>0 

2) Function  αi(a) is continuous and   α i a for a( ) > >0 0 
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3) Function fj(a) is differentiable and 00))(()( ≥≥=′ aforaf
da
daf jj  

4) (βi(ai)-wii)<0 as ai →∞  

5) Function βi(a) is continuous for a>0  

6) Either ∞=
+→

)(lim
0

ai
a

β  or ∞=∞< ∫+→
ds

s
buta

i

a

i
a )(

1)(lim
00 α

β  for some a >0. 

If the network's state a(0)  at tim e 0 is in the positive orthant of  R n (that is ai(0)>0 

i=1..N), then the network will alm ost certainly converge to som e stable point also in the 

positive orthant. Further, there will be at most a countable number of such stable points. 

  

 

Here the statem ent that the network will "a lmost certainly" converge to a stable point 

means that this will happen except f or certain rare choices of  the weight m atrix. That is, 

if weight matrix W is chosen at random among all possible W choices, then it is virtually 

certain that a bad one will never be chosen. 

 

In Eq. (2.8.1), which is describing the dynam ic behavior of the system , αi(ai) is the 

control parameter for the convergence rate. The decay function βi(ai) allows us to place 

the system's stable attractors in appropriate positions of the state space. 

 

In order to prove the part related to the stability of the system, the theorem uses Liapunov 

function approach by showing that, under the given conditions, the function 

 

 dssfsafafwE i

aN

i
jji

N

i
iji

N

j

i

)()()()(
011 1

2
1 ′−+= ∑∫∑∑

== =

β  (2.8.2) 

 

 is an energy function of the system. That is, E has negative time derivative on every 

possible trajectory that the network's state can follow. 

 

By using the condition (1), that is  W is symmetric,  the time derivative of the energy 

function can be written as 
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2

11

)()()()( ⎥
⎦

⎤
⎢
⎣

⎡
−′−= ∑∑

==
jj

N

j
jiiii

N

i
iii afwaafa

dt
dE βα  (2.8.3) 

 

and it has negative value for a≠ a*  whenever conditions (2) and (3) are satisfied. 

 

The condition (4) guarantees that  any a* to has a finite value, preventing  them  to 

approach  infinity.  

 

The rest of the conditions  (the condition wij>0 in (1) and the conditions (5) and (6)) are 

requirements to prove that the solution alw ays stays in the positive orthant and satisf ies 

some other detailed m athematical requirements, which are not so easy to show, requires 

some sophisticated mathematics. 

 

While the converge to a stable point in th e positive orthant is im portant for a m odel 

resembling a biological neuron, we do not care such a condition for artificial neurons as 

long as they converge to som e stable point having finite value. W henever the function f  

is a bounded, that is |f(a)|<c for some positive constant c, any state can not take infinite 

value. However for the stability of the system still remain the constraints: 

 

a) Symmetry:  

 

 w w i j 1 Nji ij= =, ..  (2.8.4) 

 

 

 

 

b) Nonnegativity: 

 

 Niai ..10)( =≥α  (2.8.5) 
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c) Monotonocity: 

 

 00))(()( ≥≥=′ aforaf
da
daf  (2.8.6) 

 

This form of Cohen-Grossberg theorem  states  that if  the system  of  nonlinear equations 

satisfies the conditions on sym metry, nonnegativity and m onotonocity, then the energy 

function defined by Eq. (2.8.1) is a Liapunov function of the system satisfying  

 

 *0 ii aafor
dt
dE

≠<  (2.8.7) 

 

and the global system is therefore asymptotically stable [Haykin 94].  

 

2.9 Hopfield Network 
 

 The continuous deterministic Hopfield model which is based on continuous variables 

and responses, is proposed in [Hopfield 84]  to extend their discrete m odel of the 

processing elem ents [Hopfield 82]  to resem ble actual neurons m ore closely. In this 

extended m odel, the neurons are m odeled as amplifiers in conjunction w ith f eedback 

circuits m ade up of wires, resistors and capacitors which suggests the possibility of 

building these circuits using VLSI technol ogy. The circuit diagram  of the continuous 

hopfield network is given in Figure 2.6. This circuit has a nerobiological ground as 

explained below: 
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Figure 2.6 Hopfield Network made of electronical components 

 

• Ci is the total input capacitance of the amplifier representing the capacitance of cell 

membrane of neuron i,  

• ρi is input conductance of the amplifier representing the transmembrane 

conductance of neuron i 

• wji is the value of the conductance of the connection from the output of the jth 

amplifier to the input of the ith amplifier, representing finite conductance between 

the output of neuron j and the cell body of neuron i. 

• ai(t) is the voltage at the input of the amplifier representing the soma potential of 

neuron i 

• xi(t) is the output voltage of the ith amplifier representing the short-term average of 

firing rate of  neoron i 

•  θi is the current due to external input feeding the amplifier input representing the 

threshold for activation of neuron. 

 

The output of the amplifier, xi, is a continuous, monotonically increasing function of the 

instantaneous input ai to the ith amplifier. The input-output relation of the ith amplifier is 

given by  

 

 f a ai i( ) tanh( )= κ  (2.9.1) 
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where κi is constant called the gain parameter. 

Notice that, since 

 

 tanh( )x e e
e e

x x

x x=
−

+

−

−
 (2.9.2) 

 

the amplifier transfer function is in fact a sigmoid function  

 

 f a e
e e

i
a

a a

i

i i
( ) = −

+
=

+
−

−

− −
1
1

2
1

12

κ

κ κ         (2.9.3) 

 

as given in equation (1.2.8) with κ'=2κ, but shifted so that to have values between -1 and 

+1. In Figure 2.7, the transfer function is illustrated for several values of κ. This function is 

differentiable at each point and always has positive derivative. In particular, its derivative 

at origin gives the gain κi, that is 

 
x= a af( )=tanh( )κ κ

0

+1

-1

a

 
Figure 2.7 Output function used in Hopfield network 

 

 



Dr Ogunsola                               ARTIFICIAL NEURAL NETWORKS                                CHAPTER 2 
                                                                              

 

                                                                              
 

34

 κi
i

a
df
da

= =0 (2.9.4) 

 

The amplifiers in the Hopfield circuit correspond to the neurons. A set of nonlinear 

differential equations describes the dynamics of the network. The input voltage ai of the 

amplifier i is determined by the equation 

 

 Ci
i

R i ji j j
j

i
da t

dt
a t w f a t

i

( ) ( ) ( ( ))= − + +∑1 θ         (2.9.5) 

  

while the output voltage is 

 )( iii afx =  (2.9.6) 

In Eq. (2.9.5) Ri is determined as 1/Ri= ρi+Σj wji 

 

The state of the network is described by an N dimensional state vector where N is the 

number of neurons in the network. The ith component of the state vector is given by the 

output value of the ith amplifier taking real values between -1 and 1. The state of the 

network moves in the state space in a direction determined by the above nonlinear dynamic 

equation (2.9.5).   

 

Based on the neuron characteristics given above, Hopfield network can be represented by a 

neural network as shown in Figure 2.8. 

 

Figure 2.8  Hopfield Network made of neurons 
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The energy function for the continuous Hopfield model is given by the formula 

 

 ∑∫∑∑∑ −+−= −

i
iii

i
i

j
jji

i
xdxxfxxwE

ix

iR
θ)(1

0

1
2
1  (2.9.7) 

 

where fi-1 is the inverse of the function fi, that is     

 

 f x ai i i
− =1( )    (2.9.8) 

 

In particular, for the transfer function defined by the equation  (2.9.3), we have 

 

 f x x
xi

− = −
−
+

1 1
1

( ) ln  (2.9.9) 

 

which is shown in Figure 2.9. 

 

 

Figure 2.9 Inverse of the output function 

 



Dr Ogunsola                               ARTIFICIAL NEURAL NETWORKS                                CHAPTER 2 
                                                                              

 

                                                                                
 

36

Exercise: What happens to the system's energy if sigmoid function is used instead of tanh 

function. 

 

In [Hopfield 84], it is shown that the energy function given in equation 2.9.7 is an 

appropriate Lyapunov function for the system ensuring that the system eventually reaches a 

stable configuration if the network has symmetric connections, that is wij=wji. Such a 

network always converges to a stable equilibrium state, where the outputs of the units 

remain constant.  

 

For energy E of the Hopfield network to be a Lyapunov function, it should satisfy the 

following constraints: 

 

a) E(x) is bounded 

 

b) dE
dt

≤ 0  

 

Because the function tanh(κa) is used in the system as the output function, it limits the state 

variable  to take value between -1<xi<1. Furthermore, because the integral of the inverse of 

this function is bounded if  -1<xi<1, the energy function given by Eq. (2.9.7) is bounded. 

 

In order to show that the time derivative of the energy function is always less than or equal 

to zero, we differentiate E with respect to time,  

 

             ∑∑∑∑ −++−= −

i

i
i

i
ii

i

j
j

i

i
iji

j dt
dx

dt
dx

xf
dt

dx
x

dt
dx

xw
dt
dE

iR
θ)()( 11

2
1  (2.9.10) 

 

Since we assumed wji=wij, we have 

 

 dE
dt

w x f x dx
dtj

ji j
i

R i i i
i

i
= − − +∑∑ −( ( ) )1 1 θ     (2.9.11) 
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By the use of equations (2.9.6) and (2.9.8) in (2.9.5), we obtain 

 

 w x f x da
dtji j

j
R i i i Ci

i
i

∑ − + =−1 1( ) θ . (2.9.12) 

 

Therefore Eq. (2.9.11) results in  

 

 dE
dt

C da
dt

dx
dti

i

i i= −∑     (2.9.13) 

 

On the other hand notice that, by the use of Eq. (2.9.8) we have 

 

 da
dt

d
dx

f x dx
dt

i
i

i= −1( )  (2.9.14) 

 

so 

 dE
dt

C
df x

dx
dx
dti

i

i i= −∑
−1

2( )
( )  (2.9.15) 

 

Due to equation (2.9.9) we have 

 

 
df x

dx
i
−

≥
1

0
( )

    (2.9.16) 

 

for any value of x. So Eq. (2.9.15) implies that,  

 

 dE
dt

≤ 0  (2.9.17) 
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Therefore the energy function described by equation (2.9.7) is a Lyapunov function for the 

Hopfield network when the connection weights are symmetrical. This means that, whatever 

the initial state of the network is, it will converge to one of the equilibrium states depending 

on the basin attraction in which the initial state lies. 

 

Another way to show that the Hopfield network is stable is to apply the Cohen-Grossberg 

theorem given in section 2.8.  For this purpose we reorganize the Eq. (2.9.5) as: 

 

 da t
dt

a t w f a ti
Ci R i i ji j j

ji

( ) (( ( ) ) ( ) ( ( )))= − + − −∑1 1 θ  (2.9.18) 

 

If we compare Eq. (2.9.18) with Eq. (2.8.1) we recognize that in fact Hopfield network is a 

special case of the system defined in Cohen-Grossberg theorem: 

 

 αi ia
Ci

( ) ↔ 1  (2.9.19) 

and 

 

 β θ( ( )) ( )a t a t
Ri
i

i
i↔ − +  (2.9.20) 

and 

 wij ↔ -wij (2.9.21) 

 
satisfying the conditions on 

 

a) symmetry, because wij=wij implies  

 

 -wij=-wji (2.9.22) 

 

b) nonnegativity,  because  
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 αi ia
Ci

( ) = 1
≥0 (2.9.23)  

c) monotonocity, because  

 

 0)tanh()(' ≥= a
dt
daf ii κ  (2.9.24) 

 

Therefore, according to the Cohen-Grossberg theorem, the energy function defined as 

 

 daafaafafwE ii
i

jjiiij
i j

iR

ia

)()()()()( 1

0
2
1 ′+−−−= ∫∑∑∑ θ  (2.9.25) 

 

is a Lyapunov function of the Hopfield network and the network is globally asymptotically 

stable.  

 

In fact, the energy equation defined by equation (2.2.25) may be organized as 

 

              
daaf

daafaafafwE

ia

ia

iR

i
i

i
jiij

i j

)(

)()()(

0

0

1
2
1

′−

′+−=

∫∑

∫∑∑∑

θ
   (2.9.26) 

 

Notice that 

 

 )()0()()(
0 ii

a
affafdaafi =−=′∫  (2.9.27) 

 

and also  

 

 
dxxfafdadaafa iii xaf

f

a
)())(()( 1

0

)(

)0(0

−∫∫∫ ==′
 (2.9.28) 

Therefore the energy equation defined by Eq. (2.9.25) becomes 
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 ii
ii

jiij
i j

xdxxfxxwE
ix

iR θ∑∫∑∑∑ −+−= − )(1

0

1
2
1  (2.9.29) 

 

which is the same as the energy function defined by the Eq. (2.9.7). As the time derivative 

of the Energy function is negative, the change in the state value of the network is in a 

direction where the energy decreases. The behavior of a Hopfield network of two neurons 

is demonstrated in the Figure 2.10 [Hopfield 84]. In the figure the ordinate and absisca are 

the outputs of each neuron. The network has two stable states and they are located near the 

upper left and lower right corners, marked by x in the figure. 

 

 
Figure 2.10 Energy contour map for a two neuron two stable system 

 

The second term of the energy function in Eq. (2.9.7), which is 

 

∑ ∫
=

−
N

i

x

i

i

dxxf
R1 0

1 )(1  (2.9.30) 

x 

x 



Dr Ogunsola                               ARTIFICIAL NEURAL NETWORKS                                CHAPTER 2 
                                                                              

 

                                                                                
 

41

alters the energy landscape. The value of the gain parameter determines how close the 

stable points come to the hypercube corners.  In the limit of very high gain, κ→∞, this term 

approaches to zero and the stable points of the system lie just at the corners of the 

Hamming hypercupe where the value of each state component is either -1 or 1. For finite 

gain, the stable points move towards the interior of the hypercube. As the gain becomes 

smaller these stable points gets closer.  When κ=0, only a single stable point exists for the 

system. Therefore the choice of the gain parameter is quite important for the success of the 

operation [Freeman 91]. 
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2.10. Discrete time representation of recurrent networks 
 

Consider the dynamical system defined by the Eq. (2.1.2). The change ∆x(t) in the value of 

x(t) in a small amount of time ∆t can be approximated  as: 

 

 ttt ∆≅∆ ))(())(( xFx   (2.10.1) 

 

Hence the value of x(t+∆t) in terms of this amount of change, 

 

 x(t+∆t)=x(t)+ ∆(x(t)) (2.10.2)  

 

becomes 

 x(t+∆t)=x(t)+F(x(t))∆t. (2.10.3) 

 

Therefore, if we start with t=0 and observe the output value at each time elapse of ∆t, then 

the value of x (t) at kth observation may be expressed by using the value of the previous 

observation as  

 

 x(k)=x(k-1)+F(x(k-1))∆t  k=1,2 ... (2.10.4) 

 

or equivalently, 

 

 x(k)=x(k-1)+ηF(x(k-1))  k=1,2 ... (2.10.5) 

 

where η is used instead of ∆t to represent the approximation step size and it should be 

assigned a small value for a good approximation. However, depending on the properties of 

the function F, the system may also be represented by other discrete time equations.  
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For example, for the continuous time continuous state Hopfield network described in by 

Equation (2.9.5) we may use the following discrete time approximation: 

  

 x(k)=x(k-1)+ η [-x(k-1)+tanh(κ(WTx(k-1)+θ))],   k=1,2 ... (2.10.6) 

 

However in Section 4.3 we will examine a special case of the Hopfield network where the 

state variables are forced to take discrete values in binary state space. So the discrete time 

dynamical system representation given by Eq. 2.10.6 will further be modified, by using 

sign(WTx(k-1)+θ) where sign is a special case of the sigmoid function in which the gain is 

infinity. 

 

We have observed that the stability of continuous time dynamical systems described by Eq. 

2.1.1 are implied by the existence of a bounded energy function with a time derivative that 

is always less or equal to zero. The states of the network resulting in zero derivatives are 

the equilibrium states. 

 

Analogously, for a discrete time neural network with an excitation 

 

 x(k)=x(k-1)+G(x(k-1))  k=1,2 ... (2.10.7) 

 

the stability of the system is implied by the existence of a bounded energy function so that 

the difference in the value of the energy should always be negative as the system changes 

states. 

 

When G(x)=ηF(x) the stable states of the continuous and discrete time systems described 

by equations 2.1.1 and 2.10.7 respectively are almost the same for small values of  η. 

However if η is not small enough, some stable states of the continuous system may 

becomes unreachable in discrete time. 

 


