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CHAPTER III 
 

Neural Networks as Associative 
Memory  

 
One of the pr imary fu nctions of the brain is associative memory. We associa te the 
faces with names, letters with sounds, or we  can recognize the people even if they 
have sunglasses or if they are somehow elder now. 
 
Associative memories can be implemented either by using feedforward or recurrent 
neural networks.  Such associ ative neural networks are used to associate one se t of  
vectors with another set of vectors, say input and outpu t patterns.  The aim  of an 
associative memory is, to produce the associ ated output pattern whenever one of the 
input pattern is applied to the neural network. The input pattern may be applied to the 
network ei ther as i nput or as i nitial state, and the out put pattern is observed at the 
outputs of som e neurons constituting  the network. According to the way  that the 
network handles errors at the input pattern, they are classified as interpolative an d 
accretive memory. In the interpolative memory i t is allowed to have som e deviation 
from the desired output pattern  when added some noise to  the related input pattern . 
However, in accretive m emory, it is desired the output to be exactly the sam e as the 
associated output pattern, even if th e input pattern is noisy. Another classification o f 
associative memory is such that while the memory in wh ich the associated input and 
output patterns differ are called heteroassociative memory, it is called autoassociative 
memory if they are the same. 
 
In this chapter, first the basic definitio ns about associative memory is given and then 
it is explained how neural networks can be made linear associators so as to perform as 
interpolative memory. Next it is explained how the Hopfield network can be used as 
autoassociative m emory and then B ipolar Associative Memory netw ork, which is 
designed to operate as heteroassociative memory, is introduced.  
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3.1. Associative Memory 
 
In an associative memory, we store a set of  patterns µk, k=1...K, so that the network 
responds by producing whichever of the stored patterns m ost closely resembles the 
one presented to the network  
 

Here we need a measure for defining resemblance of the patterns. For this purpose the 
norms that wer e introduced in Section 2.1  may be used. While Euclidean distance is 
convenient for the continuous valued pattern vectors, Hamming distance, which gives 
the number of m ismatched components, is more appropriate for patterns with binar y 
or bipolar entries. 
 
Suppose that the stored patterns, which are called exemplars or memory elements, are 
in the form of pairs of associations, µk=(uk,yk), uk∈RN, yk∈RM, k=1..K. According to 
the mapping ϕ: RN→RM that they implement, we disting uish the following types of 
associative memories: 
 
• Interpolative associative memory: w hen u=ur is pre sented to the  m emory it 
responds by producing yr of the stored association. However if u differs from ur by 
an amount of ε, that is if u=ur+ε is presented to the memory, then the response differs 
from yr by some amount εr. Therefore in interpolative associative memory we have  
  
 Kkthatsuch rrrr ..1,)( ==⇒=+= 00yu εεεεϕ +  (3 .1.1)

  
• Accretive associative memory: when u is presented to the memory, it responds by 
producing yr of the stored association such that ur is the one closest to u among uk, 
k=1..K, that is,  
 
 

k

rr thatsuch
u

uyu min)( ==ϕ || uk - u ||, k=1..K   (3.1.2)

  

The accretive associative memory in the form given above is called heteroassociative 
memory. However if the stored exemplars are in a special form such that the desired 
patterns and the input patterns are the same, that is yk=uk for k=1..K, then it is called 
autoassociative memory. In such a  memory, whenever u is presented to the memory 
it responds by ur which is the closest one to u among uk, k=1..K, that is,  
 
 

k

rr thatsuch
u

uuu min)( ==ϕ || uk - u ||  k=1..K  (3.1.3)  
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While inte rpolative memories can be im plemented by us ing feed-forward neural 
networks, it is more appropriate to use recurrent networks as accretive memories. 
 
The advan tage of using recurrent networ ks a s associative m emory is their 
convergence to one of a fin ite number of stable states when started at som e initial 
state. The basic goals are : 
 
• to b e able to  store as m any exem plars as we need, each corresponding to a 

different stable state of the network,  
• to have no other stable state 
• to have the stable state that the networ k converges to b e the one closest to the 

applied pattern 
 
The problems that we are faced with being: 
 
• the capacity of the network is restricted, 
• depending on the number and properties of th e patterns to  be stored, som e of the 

exemplar may not be the stable states, 
• some spurious stable states different than the exemplars may arise by themselves  
•    the converged stable state may be other than the one closest to the applied pattern 
 
One way of using  recur rent n eural networks  as associative m emory is to f ix the 
external input of the network and present the input pattern ur to the system by setting 
x(0)=ur. If we relax such a network, then it will converge to the attractor x* for which 
x(0) is within the basin attra ction as explained in Section 2.7. If  we are able to place 
each µk as an attractor of the network  by proper choice of th e connection weights, 
then we expect the network to relax to the attractor x*=µr that is related to the initial 
state x(0)=ur. For  a goo d per formance of the network, we need the network to 
converge on ly to one of the stored patterns µk, k=1...K. Unfortunately, some initial 
states may conv erge to  spurious states, which are the undesired attractors of the 
network representing none of the stored patterns.  Spu rious states m ay arise b y 
themselves depending on the model used and the patterns stored. The capacity of the 
neural associative memories is restricted by the size of  the networks. If we increment 
the num ber of stored patterns for a fixed size n eural network, spurious states arise 
inevitably. S ometimes, t he netw ork m ay converge no t to a spurious state, but to a 
memory pattern not so close to the presente d pattern. What we expect for a feasible 
operation is, at  lea st f or the  stored memory pa tterns themselves, if a ny of them i s 
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presented to the network by setting x (0)= µk , then the network should stay 
converged to x*=µr (Figure 3.1). 
 

Figure 3.1 In associative memory each memory element is assigned to an attractor 

 
A second way to use recurrent networks as associative memory, is to present the input 
pattern ur to the system as an external input. This can be done by setting θ=ur, where 
θ is the threshold vector whose ith com ponent is corresponding to the threshold o f 
neuron i. After setting x(0) to som e fixed value we relax the network and  then wait 
until it converges to an attractor x*. For a good performance of the network, we desire 
the network to have a single attractor such that x*=µk for each stored input pattern uk, 
therefore the network will converge to this attractor inde pendent of the initial state of 
the network. Another solution to the problem is to have predeterm ined initial values, 
so that these initial values lie within the basin attraction of µk whenever uk is applied. 
We will con sider this kind of networks in  Chapter 7 in more de tail, where we wi ll 
examine how these recurrent networks are trained. 
 
 
3.2 Linear Associators as Interpolative Memory 
 
It is quite easy to implement interpolative associative memory when the set of input 
memory elements {uk} constitutes an othonormal set of vectors, that is 
 

 u ui j i j
i j

⋅ =
=
≠

1
0

 (3.2.1) 
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By using kronecker delta, we write simply 
 
 ui .uj =δij (3.2.2) 

 
The mapping function ϕ(u) defined below m ay be used to establish an interpolative 
associative memory: 
 
 ϕ ( )u W u= T  (3 .2.3) 

 
where T denotes transpose and  
 
 W u y= ×∑ k k

k
 (3 .2.4) 

 
Here the sym bol × is  us ed to denote outer product of   x∈RN and y∈RM, which is  
defined as 
 
 T)(

Tkkkkkk uyyuyu ==×
T

, (3 .2.5) 

 
resulting in a matrix of size N by M. 
 
By defining matrices [Haykin 94]: 
 
 U=[u1 u2.. uk.. uK] (3 .2.6) 
and  
 Y=[y1 y2.. yk.. yK] (3 .2.7) 

 
the weight matrix can be formulated as 
 
 W YUT T=  (3 .2.8) 

 
If the network is going to be used as autoassociative memory we have Y=U so,  
 
 W UUT T=  (3.2.9)     

 
For a function ϕ(u) to constitute an interpolative associative memory, it should satisfy 
the condition  
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 ϕ(ur)=yr  for r=1..K (3.2.10) 
 
We can check it simply as 
 
 ϕ ( )u W ur r= T    (3.2.11) 
 
which is  
 
 W u YU uT Tr r=  (3 .2.12) 
 
Since the set {uk} is orthonormal, we have 
 
 rk

k
kr

r yyuYU == ∑δT  (3 .2.13) 

which results in 
 
 ϕ ( )u YU u yr r r= =T  (3.2.14)
   
as we desired. 
 
Furthermore, if an input pattern u=ur+ε different than the stored patterns is applied as 
input to the network, we obtain 
 

 
ϕ ε

ε

( ) ( )u W u

W u W

= +

= +

T

T T

r

r
 (3.2.15) 

 
Using equation (3.2.12) and (3.2.13) results in 
 
 ϕ ε( )u y W= +r T  (3.2.16) 

 
Therefore, we have 
 
 ϕ ε( )u y= +r r  (3.2.17) 
 
in the required form, where 
 
 ε εr= WT  (3.2.18) 
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Such a memory can be implemented as shown in Figure 3.2 by using M neurons each 
having N inputs. The co nnection weights of neuron i is assigned value Wi, which is 
the i th colum n vector of matrix W. Here each neuron has a linear output transfer 
function f(a)=a. W hen a stored pattern uk is ap plied as inpu t to the network, the 
desired value yk is observed at the output of the network as: 
 
 x W uk k= T  (3.2.19) 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Linear Associator 
 
Until now, we hav e investigated  the use of linear mapping YUT as a ssociative 
memory, which works well when the input patterns are orthonorm al. In the case the 
input patterns are not orthonormal, the linear associator cann ot m ap som e input 
patterns to desired output pa tterns without error. In the following we will investigate 
the conditions necessary to minimize the output error for the exemplar patterns. That 
is, for a given set of exemplars µk=(uk,yk), uk∈RN, yk∈RM, k=1.. K, our purpose is to 
find a linear mapping A* among A: RN→RM such that: 
 
 A

A
* min= ∑

k
|| yk - Auk ||  (3.2.20) 

 
where ||.|| is chosen as Euclidean norm. 
 
The problem may be reformulated by using the matrices U and Y [Haykin 94]:  
 
 A

A
* min= || Y - AU ||  (3.2.21) 

1 2 i M

output layer

input layer

u u u u1 2 N j 

x 1 x 1 x i x M

W
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The pseudo inverse method [Kohonen 76] based on least squares estimation provides 
a solution for the problem in which A* is determined as: 
 
 A YU* = +  (3.2.22)  
 
where U+ is pseudo inverse of U. 
 
The pseudoinverse U+ is a matrix satisfying the condition: 
 
 U U 1+ =  (3.2.23) 
 
where 1 is the identity matrix. A perfect match is obtained by using A YU* = + , since  
 
 A U YU U Y* = =+  (3.2.24) 
 
resulting in no error due to the fact 
 
 || Y - A*U|| = 0 (3.2.25) 
 
In the case the input patterns are lin early independent, that is none of them  can be 
obtained as a linea r combinations of the  othe rs, then a m atrix U+ sa tisfying Eq. 
(3.2.23) can be obtained by applying the form ula [Golub and Van Loan  89, Haykin 
94] 
 
 U U U U+ −= ( )T T1  (3.2.26) 

 
Notice that f or the input patterns, w hich are the colum ns of the matrix U, to be 
linearly independent, the number of colum ns should not be m ore than the number of 
rows, that is K N≤ , otherwise UTU will be singular and no inverse will exist. The 
condition K N≤  means that the number of  entries constituting the patterns restricts 
the capacity of the memory. At most N patterns can be stored in such a memory. 
 
This m emory ca n be  im plemented by a neural network  for which WT=YU+ . The 
desired value yk appears at the output of the network as xk when uk is applied as 
input to the network: 
 
 x W uk k= T  (3.2.27) 
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as explained in the previous section. 
 
Notice that for the special case of orthonormal patterns that we examined previously 
in this section, we have 
 
 U U 1T =  (3.2.28) 
 
that results in the pseudoinverse, which is in the form 

 
 U U+ = T  (3.2.29) 
 
and therefore 
 
 W YUT T=  (3.2.30) 
 
as we have derived previously.  
 
 
3.3. Hopfield Autoassociative Memory 
 
In section 2.9 we have examined continuous input, continuous time Hopfield network. 
In t his s ection we will i nvestigate how Hopfield n etwork can be used as 
autoassociative memory. For this purpose some modifications are done on it so that it 
works in discrete state space and discrete time. When discrete Hopfield network was 
introduced as associative memory in [Hopfield 82] it had attracted a great attention. In 
[Hopfield 84] it is shown that many important characteristics of  the dis crete and 
continuos deterministic models are closely related (Figure 3.3)  
 

 

 

 

 

 

 

 

 

Figure 3.3 Hopfield Associative Memory 
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Note that, whenever the patte rns to be stored in Hopfield network are from  N 
dimensional bipolar space cons tituting a hyp ercube, that is uk∈{-1,1}N, k=1..K, then 
it is convenient to have a ny stable state of the network on the corn ers of the 
hypercube. For this purpo se refer to the output transfer function given by Eq. (2.9.3) 
and to Figure 2.7 for different values of the gain. If we let the output transfer function 
of the neurons in the network to have a very high gain, in the extreme case  
 
 f a ai ( ) lim tanh( )=

→∞κ
κ   (3.3.1) 

 
we obtain 
 

 
f a a

for a
for a
for a

i ( ) sign( )= =
>
=

− >

1 0
0 0

1 0
        (3.3.2) 

Furthermore note that the second term of the energy function given by Eq. (2.9.7) that 
we repeat here for convenience: 
 

 i

N

i
i

N

i

x

R

N

i

N

j
ijji xdxxfxxwE i

i ∑∑ ∫∑∑
=

−

== =

−+−=
1

1

1
0

1

1 1
)(

2
1 θ  (3.3.3) 

 
approaches to zero. Therefore the stable states of the network corresponds to the local 
minima of the function: 
 

 ∑∑∑ −−=
i

iii
j

jji
i

xxxwE θ
2
1  (3 .3.4) 

 
so that they lie on the corners of the hypercube as explained previously. 
 
In section 2.10, we have derived the discre te time approximation for continuous time 
Hopfield network described in section 2.9. However in this sect ion we investigate a 
special case of the Hopfield network where the stable states of the network are forced 
to take discrete values in bipolar state space. Knowing in advance  that the local 
minima of th e energy function should take place at the  corners of the N dimensional 
hypercube, we can get rid of the slow convergence problem due to sm all value of η. 
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For this purpose a discrete state excitation [Hopfield 82] of the network, is provided 
in the following: 
 
 

 x k f a k
for a k

x k for a k
for a k

i i

i

i

i

( ) ( ( ))
( )

( ) ( )
( )

+ = =

>

=
− >

1
1 0

0
1 0

      (3.3.5)   

 
where ai(k) is defined in a manner similar to that we used to: 
 
 a k w x ki ji

j
j i( ) ( )= +∑ θ  (3.3.6) 

 
The processing elements of the network are updated one at a time, such that all of the 
processing elements must be updated at the same average rate. 
 
Note that, for an y vector x having bipolar entries, that is xi∈{-1,1}, we ob tain the 
vector itself if we apply the function defined by Eq. (3.3.5) on it, that is 
 
 f(x)=x  (3.3.7) 
 
Here f is used to denote the vector function such that the function f is applied at each 
entry. 

 
For stability of the discrete Hopfield network, it is fu rther required wii=0 in addition 
to the constraint wij=wji 
 
In order to use d iscrete Hopfield network as autoassociative memory, its w eights are 
fixed to 
 
 W UUT T=  (3.3.8) 
 
 where U is the input pattern m atrix as defined in Eq. (3.2.6). Rem ember that in 
autoassociative m emory w e have Y=U, where Y is the m atrix of desired output 
patterns as defined in Eq (3.2.7). For the stability of the network, the diagonal entries 
of W is set to 0, that is wii=0, i=1..N 
 
If all th e states of the network are to be updated at once, then the next state of the 
system can be represented in the form 
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 x(k+1)=f(WTx(k)) (3.3.9) 

 
For the special case if the exemplars are orthonormal, then due to fact indicated by 
Eqs. (3.3.7) and (3.2.13) we have 
 
 f(WTur)=f(ur)=ur (3.3.10)  
 
that means each exemplar is a stable state of the network. Whenever the initial state is 
set to one of the exemplar, the system remains there. However, if the initial state is set 
to some arbitrary input, then the network converges to one of the stored exemplars, 
depending on the basin of attraction in which x(0) lies.  
  
However, in general, the input patterns are not orthonormal, so there is no guarantee 
that each exemplar is corresponding to a st able state. Therefore the problems that we 
mentioned in Sectio n 3.1 arise.  The capacity  of the Hopfield net is less than 0.138N 
patterns, where N is the number of units in the network [Lippmann 89]. 
 
In the following we w ill show that the energy function always decreases as the state 
of the processing elements are changed one by one. Notice that: 
 

 

)()()(
2
1

)1()1()1(
2
1

))(())1((

kxkxkxw

kxkxkxw

kEkEE

i
iii

j
jji

i

i
iii

j
jji

i

∑∑∑

∑∑∑

++

+−++−=

−+=∆

θ

θ

xx

 (3 .3.11) 

 
Assume that the neuron that just changes state at step k is neuron p. Therefore xp(k+1) 
is determined by equation 3.3.5 and for all the other neurons we have xi(k+1)=xi(k), i≠
p. Furthermore we have wpp=0. Hence,  
 
 ∆E x k x k w x kp p jp j

j
p= − + − +∑(( ( ) ( ))( ( )) )1 θ  (3 .3.12) 

that is, 
 
 ∆E x k x k a kp p p= − + −(( ( ) ( )) ( )1  (3 .3.13) 

 
Notice that if  the value of  xp remains the sam e, then xp(k+1)=xp(k) so ∆E=0. If they 
are not the same, than it is either the case xp(k)= -1 and xp(k+1)=1 due to fact ap(k)>0, 



Dr Ogunsola                               ARTIFICIAL NEURAL NETWORKS                           CHAPTER 3 
 

                                                                                                              
 

55

or xp(k)=1 and xp(k+1)= -1 due to fact ap(k)<0. Whatever the case is, if xp(k+1)≠xp(k) 
it is in a direction for which ∆E<0. Therefore, for discrete Hopfield network we have  
 
 ∆E ≤ 0 (3 .3.14) 
 
Because at eac h state c hange, the e nergy f unction dec reases at le ast by some f ixed 
minimum amount, and because the energy function is bounded, it reaches a minimum 
value in a finite number of state changes. So the Ho pfield network converges to one 
stable state in finite time in contrary to the asymptotic convergence in the continuous 
Hopfield network. The schedule, in which only one unit of the discrete Hopfield 
network is up dated at a tim e, is called asynchronous update. The oth er approach in 
which all the units are updated at once is called synchronous update. Although the 
convergence with the asynchronous update mechanism is guaranteed, it may result in 
a cycle of length two in synchronous update.  
 
It should be noted that, the continuous deterministic model implies the possibility of 
implementing the discret e network in a ctual har dware because of th e close relatio n 
between discrete and continuous models. However,  th e discrete m odel is often 
implemented through computer simulations because of its simplicity.  
 
Exercise: Explain how can we use the Hopfield network as autoassociative memory if 
the states are not from bipolar space {-1,1}N but from binary space{0,1}N . 
 
 
3.4. Bi-directional Associative Memory  
 
The B i-directional A ssociative Mem ory (BAM) introduced in [Kosko 88] is a 
recurrent network ( Figure 3.4) designed to work as hete roassociative memory 
[Nielsen 90]. BAM network con sists of two sets of neuro ns whose outputs are 
represented by vectors x ∈ RN and v∈RM respectively, having activation defined by  
the pair of equations: 
 
 

 Miforafwa
dt

da
i

N

j
vjixi

x
ji

i ..1)(
1

=++−= ∑
=

θα  (3 .4.1) 

  

 Njforafwa
dt

da
j

M

i
xijyj

v

ij

j ..1)(
1

=++−= ∑
=

φβ  (3 .4.2) 
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where αi, βj, θi, φj are positive constants for all i=1..M, j=1..N, f is sigm oid function 
and W=[wij] is any N×M real matrix.  
 

The stability of the BAM network can be proved easily by applying Cohen-Grossberg 
theorem on the state vector z∈RN+M  defined as  
 

   
NMiMMijv

Mix
z

j

i
i +≤<−=

≤
=

,
 (3 .4.3) 

 
that is z obtained through concatenation x and v. 
 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Bi-directional Associative Memory 
 
Since BAM is a special case of the network defined by Cohen-Grossberg theorem, it  
has a Lyapunov Energy function as it is provided in the following: 
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 (3 .4.4) 

 
The discrete BAM model is defined in a manner similar to discrete Hopfield network. 
The output functions are chosen to be f(a)=sign(a) and states are excited as: 

x layer 

v layer 

W 

1 2 i M

Nj 21 
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 x k f a k
for a k

x k for a k
for a k

i x i

x i

x i

x i

( ) ( ( ))
( )

( ) ( )
( )

+ = =

>

=

− <

1
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1 0

 (3.4.5) 

 
 

 v k f a k

for a k

v k for a k

for a k
j v j

v j

v j

v j

( ) ( ( ))

( )

( ) ( )

( )

+ = =

>

=

− <

1

1 0

0

1 0

 (3.4.6) 

 
where 
 

 Miforafwa i

N

j
vjix ji

..1)(
1

=+= ∑
=

θ  (3.4.7) 

and 

 Njforafwa j

N

i
xijv ij

..1)(
1

=+= ∑
=

φ . (3.4.8) 

 
or in compact matrix notation it is shortly 

 
 x(k+1)=f (WTv(k))  (3.4.9) 
 
and 
 
 v(k+1)=f(Wx(k)). (3.4.10) 

 
In the discrete BAM, the energy function becomes  
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j
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 (3.4.11) 

 
satisfying the condition 
 
 ∆E ≤ 0 (3.4.12) 

 
which implies the stability of the system. 
 
The weights of BAM is determined by the equation  
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 WT=YUT (3.4.13) 

 

For the special case of orthonormal input and output patterns we have 
 
 f(WTur)= f(YUTur)=f(yr)=yr (3.4.14) 
and 
 
 f(Wyr)= f(UYTyr)=f(ur)=ur (3.4.15) 
 
indicating that exemplars are stable states of the network. Whenever the initial state is 
set to one of the exem plar, the system remains there. For arbitrary ini tial s tates the 
network converges to one of the stored  exem plars, depending on the basin o f 
attraction in which x(0) lies.  
  
For the input patterns that are not orthonormal, the network behaves as it is explained 
for the Hopfield network. 
 
Exercise: C ompare the  special case U=Y of B AM with H opfield Autoassociative 
memory. 
 
 


