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CHAPTER IV 

 Combinatorial Optimization by 
Neural Networks 

 
 Several authors have suggested the use of  neural networks as a tool to provide 

approximate solutions for com binatorial optimization problems such as graph m atching, 

the traveling salesman problem, task placement in a distributed system, etc.  

 

In this chapter, we f irst give a brief  description of combinatorial optimization problems.  

Next we explain in general how neural networks can be used in com binatorial 

optimization and then introduce Hopfield network as optim izer for two well known 

combinatorial optimization problems: the gr aph partitioning and the traveling salesm an. 

Hopfield optim izer solves com binatorial optimization problem s by gradient descent, 

which has the disadvantage of being trapped in local minima of the cost function.   

 

The efficiency of neural networks in so lving of  NP_hard com binatorial optim ization 

problems has been investigated by several researchers [Bruck and Goodm an 88, 90, Yao 

92]. It has been shown that even  finding approxim ate solutions to NP_hard problems is 

not an easy task. By the use of techniques of  complexity theory, it has been proved that 

no network of polynom ial size exists to solv e the traveling salesm an problem  unless 

NP=P [Bruck and Goodman 1990]. However, their parallel nature and good perform ance 

in finding approximate solution make the neural optimizers interesting. 
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4.1 Combinatorial Optimization Problems 
 

The problems typically having a large but finite  set of solutions among which we want to 

find the one that m inimizes or m aximizes a cost function are often referred as 

combinatorial optimization problems. Since any m aximization problem can be reduced 

to a m inimization problem  sim ply by changi ng the sign of the cost function, we will 

consider only the m inimization probl em with no loss of generality. An instance of a 

combinatorial optim ization problem  can be form alized as a pair ( S,g). The solution 

space, denoted S, is the f inite set of all possible solutions. The cost function, denoted by 

g, is a m apping from  the set of solu tions to real num bers, that is, g S→R [Aarts and 

Korst 89].  In the case of m inimization, the problem  is to find a solution S* ∈ S, called 

globally-optimal solution, which satisfies  

 

 S g S
S S

i
i

* min ( ).=
∈

 (4.1.1)  

 

Notice that for a given instance of the probl em, such an optim al solution m ay not be 

unique. 

  

 Optimization problem s can be divided into classes according to the tim e required to 

solve them. If  there exists an algorithm that solves the problem in a time that grows only 

polynomially with the size of the problem , then  it is said to be polynom ial. The set of 

polynomial time problems, denoted P, is a subclass of another class called NP. Here NP 

stands for non-deterministic polynomial, im plying that a polynom ial tim e algorithm  

exists for a nondeterministic Turing machine. However for the problem s in NP but not 

P, there exists neither a polynom ial tim e algorithm  for determ inistic Turing machine  

(although it exists for nondeterministic Turing Machine) nor a proof the non-existence of 

such an algorithm.  In spite of unavailability  of polynomial time algorithms to solve this 
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kind of problem s, a "guess" of the solution can be tested in polynom ial time to find out 

whether or not it is the right one. 

 

Exercise: Explain nondeterm inistic polynom ial problem s in term s of Turing m achine 

very briefly. 

 

An important subclass of NP is the NP_complete problems. They are problems in NP and 

characterized by the fact that each problem  in the class can be reduced to any other 

member in polynom ial time. Therefore, if one  could find a determ inistic algorithm that 

solves one of the NP_complete problems in polynomial time, then all of the NP_complete 

problems could be solved in polynom ial time. In that case, P and NP_com plete would be 

the same class. The probable situations are sketched in Figure 4.1. Emprically, the time it 

takes to solve an NP_com plete problem tends to scale exponentially with the size of the 

problem [Hertz et al 91, Garey and Johnson 79] 

 

 

 

 

 

 

 

Figure 4.1 The class of NP problems a) assuming that P≠NP 
b) if  any p∈NP_complete becomes p∈P, then it implies P=NP 

 

Exercise: Explain the reduction of one problem to another in polynomial time.  

 

A combinatorial optimization problem of a major theoretical and practical interest, is the 

traveling salesman problem (TSP), and it has been subj ect of m uch work [Lawler et al 

85]. This problem  is NP_com plete, and ther efore com putationally intractable f or large 

instances of the problem . It is of great prac tical use in various im portant areas such as 

NP

P 

NP-complete 

NP 

P=NP-complete 
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circuit placement in VLSI, tool m otion in manufacturing, network design etc. Thus the 

development of m ethods searching for solutions that are close to the optim um, and yet 

not excessively tim e consum ing, is the source for continued research. In the TSP, the 

shortest closed path traversing each city under consideration exactly once is searched. 

For TSP, the number of cities determines the size of the problem (Figure 4.2). 

 

 

Figure 4.2 The traveling salesman problem a) an instance with 4 cities b) the optimum solution 
b) a nonoptimum solution c) non feasible solution having some unvisited cities  

 

Another problem  that we will consider in this chapter because of its sim plicity in 

designing a neural optim izer is the vertex cover problem . It is also an NP _complete 

problem, therefore no efficient algorithm s for its exact solution is available when the 

number of nodes in the graph is large. The pr oblem size is determ ined by the num ber of 

nodes in the graph for which a minimum cover is searched. 
 

The form al problem  can be stated as follows: Let  G=(V,E) be a graph where V={v1, 

v2,..,vN} is the vertices  and  E={( vi,vj)} is the  edges  of the graph. A cover C of G is a 

subset of V such that for each edge ( vi, vj) in E, either vi or vj is in C.  A minimum cover 
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of G is a set C* such that the number of nodes in C* is the minimum among all the covers 

of G, that is |C*|≤|C|. 

For exaple for the sam ple graph given in Figure 4.3, the covers are  C1=(a,b,c,d,e), C2=(a,b,c,d), 

C3=(a,b,c,e), C 4=(a,b,d,e), C 5=(a,c,d,e), C 6=(b,c,d,e), C 7=(a,b,e), C 8=(a,d,e), C 9=(b,c,d), 

C10=(b,c,e), C11=(b,d,e), C12=(b,e) and the minimal cover is C12=(b,e). 

 

 

 

 

 

 

Figure 4.3 A sample graph 

  
If we have to solve an NP _complete problem , then a very long com putation m ay be 

needed for an exact solution. The optim um solution of the vertex cover problem  can be 

obtained by enum erating all the covers and then selecting the m inimum one.  However 

such an enum erative search for the exact optim um solution have a tim e complexity of 

O(2n), where n is the num ber of vertices in the graph. Being an NP com plete problem, 

finding the exact m inimum cover of G is not practical when the num ber of vertices is 

very large.  Thus, in some cases, approximate algorithms are preferred [Will 86].  

 

Exercise: Explain what approximate solutions may be used for vertex cover problem.  

 

A heuristic solution to the problem  using a greedy approach m ay be established as 

follows: First, the node having the highest de gree in G is selected and included in C +, 

that is the cover being generated. Then, the node and all its adjacent edges all together 

with the related term inal nodes are rem oved from G and the procedure is repeated until 

all nodes in G have been removed. 

 

 

a

b c

d e
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4.2 Mapping an Optimization Problems onto Neural Networks 
 

Solving a com binatorial optim ization problem  aim s to f ind the "best" or "optim al" 

solution am ong a finite or countably infinite  num ber of alternative solutions. As an 

alternative to the conventional optim ization methods, neural networks are used for the 

solution of com binatorial optim ization problem s. In general, a neural optim izer is a 

neural network whose neurons are affecti ng the problem  solution. For instance neurons 

affecting the (city, position) pair of the tour  can be used in the neural optim izer for 

solving the traveling salesm an problem . If a neuron is "on", this im plies that the 

corresponding city should be visite d in the given position in the approximately optimal 

solution. Then strongly inhibitory links are established between neurons, which represent 

incompatible elements of the solution; for ex ample, a city should not be visited twice, 

and a position should not be occupied by two di fferent cities. Furtherm ore, inhibitory 

links representing the cost are placed between  neurons. For exam ple, the intensity of 

inhibitory links can represent the distances  between cities in the traveling salesm an 

problem. Once the m odel is set up, it is allowed to relax dynam ically to a steady-state 

which should be of  "m inimum energy" re presenting a quasi-m inimal cost solution 

[Hopfield and Tank 85, Gelenbe 94]. 

 

 Hopfield network, Boltzm ann m achine, m ean field network, Gaussian m achine and 

several other neural networks can be used as neural optim izers. The units in these 

networks tend to optim ize a global functi on of the state space, by using only local 

information. Mean Field, Boltzm ann and Gaussian machines are stochastic in nature and 

allow escaping from local optima. 
 

In the following, how neural networks can be  used to solve com binatorial optimization 

problems is explained in general: An instan ce of a com binatorial optimization problem 

can be considered as a tuple (S,S',g) where S is the finite set of solutions; S'  is the   set of  

feasible solutions that satisf y the constraints of  the problem ; and g: S→R is the cost 
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function assigning a real value to each solution. The aim is to find a feasible solution for 

which the cost function is optimal [Aarts and Korst 89]. 

 

In order to use a neural optim izer to solve combinatorial optimization problems, the state 

space of the network is m apped onto the set of solutions. The state space X of a neural 

optimizer is the set of all possible state vectors x whose com ponents correspond to the 

neuron outputs. For this purpose, first the given problem  is form ulated as a 0-1 

programming problem. Then, a neural network is defined such that the state of each unit 

determines the value of a 0-1 variable. Thus , the neural network im plements a bijective 

(one to one and onto) function m: X → S.  The next step is to determ ine the strengths of 

the connections such that the energy function is order-preserving. 

 

The energy function E of a neural network that im plements a m inimization problem  

(S,S',g) is called order-preserving if  

 

                                    g(m(xk)) < g(m(xl)) ⇒ E(xk) <  E(xl).   (4.2.1) 

 

for any xk, xl ∈X with m(xk), m(xl) ∈ S'          

 

Exercise: Explain order preservation in terms of traveling salesman problem. 

    

Another desired property of  the network is f easibility. Let X* to denote the set of  stable 

states of a neural network. The energy function E of the neural network is called feasible 

if each local minimum of the energy function corresponds to feasible solution, that is  

 

 m(X*) ⊆ S'    (4.2.2)    

where  

 

 m(X*) = { Si ∈ S   |   ∃xk ∈ X * : m(xk) = Si } .  (4.2.3) 
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Feasibility of the energy f unction implies that the solution achieved by the network will 

always be a feasible one, since a neural optimizer always converges to a configuration x∈

X* 

 

Exercise: Explain feasibility in terms of traveling salesman problem 

 

Note that, if the energy function is order pr eserving, then the energy will be m inimal for 

configurations corresponding to an optim al solution (Figure 4.4). Furtherm ore, if the 

energy function is feasible, the network is gua ranteed to converge to a feasible solution. 

Hence, feasibility and order-preservation of  the energy f unction imply that the network 

will tend to f ind an optim al feasible solution for the given instance of  the combinatorial 

optimization problem. 

 

Figure 4.4: The goal of a neural optimizer is to converge to the global m inimum of the energy  
function 
 

Further notice that if  {S*}⊂S'-m(X*), where S* is the m inimum solution as defined by 

Eq. (4.1.1), in such a case, the neural network will never converge to a state 
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corresponding to the m inimum solution, but to a near m inimum one. The neural 

optimizers are usually designed such that m(X*)=S'  

 

4.3.  Hopfield Network as Combinatorial Optimizer   

 
In Section 4.2, we explained how neural ne tworks could be used for com binatorial 

optimization in general. In this section, we will consider the Hopfield network in 

particular. We will explain the design process,  that is how the num ber of  units and the 

weights of the connections are decided, th rough the NP-com plete problems provided in 

Section 4.1.  

 

Consider the continuous valued asynchronous Hopfield model in which the outputs of the 

neurons are computed from its inputs using the sigmoidal relation. That is, for neuron i, it 

is in the form: 

 

 x f a ai i i= = +( ) ( tanh( ))1
2 1 κ   (4.3.1)    

 

where κ is the gain constant and ai is the activation determined by the equation: 

 

 ij

N

j
jii xwa θ+= ∑

=1
     (4.3.2) 

 

As in the case of  associative m emory give n in Chapter 3, we will consider again the 

extreme case κ→ ∞. However, the output transfer functi on of the neurons here is shifted 

so that it takes values between 0 and 1, in spite of -1 and 1. 

 

Still in this case, the energy function is [Hopfield 84, Hopfield and Tank 85]:  
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 E w x x xji i
j

N

i

N
j i

i

N
i= − −

== =
∑∑ ∑1

2
11 1

θ     (4.3.3) 

 

where xi is the output of neuron i, wji is the connection weight from neuron j to neuron i, 

θi is the input bias to neuron i and N is the number of neurons in the network.  

 

Notice that the energy function is bounded and has negative derivative when  xi∈{0,1}, so 

it is a Lyapunov function. Therefore, the ener gy is to be m inimized by the Hopfield 

network's state transitions. Furtherm ore notice that x=x2 whenever x∈{0,1}, hence the 

energy can be reorganized as: 

 

 E w x xji i
j

n

i

n
j= −

==
∑∑1

2
11

 (4.3.4) 

where wji=2θi 

 

Exercise:  W hat happens to the restriction wii=0? Is it still necessary for binary state 

Hopfield Network? 

 

Now our goal is to represent the vertex cove r problem by a Hopfield network so that the 

cost of the problem  will be m inimized as the energy of the network decreases at each 

step.  

 

A solution to the vertex covering problem has the following constraints: 

1. Every edge in the graph must be adjacent to at least one of the vertices in the cover, 

2. There should be as few vertices in the cover as possible. 

 

The first constraint is necessary for the feasibility. The second one is, in fact, not a 

constraint but a statem ent for the m inimization of cost function. The problem  can be 

represented by a neural network in which each neuron corresponds to a vertex in the 
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graph. The outputs of neurons indicate whethe r the corresponding vertex is included in 

the cover or not. The case xi=1 indicates that vertex i is in the cover while xi=0 indicates 

it is not.   

 

The energy function should be formed so that it satisfies the constraints that we discussed 

above. W e are thus dealing with a special case of a very general class of problem s, 

namely to find the m inimum of a function in the presence of constraints. The standard 

method of solution is to introduce the constraint via constants called Lagrange multipliers 

into the cost function, so the m inimum of th e cost function autom atically satisfies the 

constraints for the feasibility. 

 

Let a 0-1 variable eij be assigned value 1 if there is an edge from vertex i to vertex j in the 

graph, and it is 0 otherwise. Below, the cost function to be m inimized is formulated as 0-

1 programming  (Ghanwani 94): 

 

 C A e x e x x e B xij
j

N

i

N
i

j

N

i

N
ij i j

j

N

i

N
ij i

i

N
( ) ( )x = − + +

== == == =
∑∑ ∑∑ ∑∑ ∑

11 11 11 1
2   (4.3.5) 

 

The term with coefficient A in Eq. (4.3.5) is zero when the requirem ent for a valid cover 

has been met. That is, all the edges in the graph are adjacent to at least one of the vertices 

in the cover. The term  with coefficient B increases the energy by an am ount proportional 

to the number of vertices in the cover, em phasizing minimality. The constant part of the 

cost function can be dropped without affec ting the solution. Hence the cost function  

becomes 

  

 ∑∑∑∑∑
== == =

++−=
n

i
iij

n

i

n

j
jiij

n

i

n

j
i xBexxexAC

11 11 1
)2()(x  (4.3.6) 
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 By com paring the energy function given in Eq. (4.3.3) with the cost function in Eq. 

(4.3.6), we obtain: 

 

 w Aeij ij= −2  (4.3.7) 

and 

 θi ij
i

n
A e B= −

=
∑2

1
 (4.3.8) 

 

By this setting of the connection weights a nd thresholds, the energy function m inimizes 

the cost function. In asynchronous network, the trajectory of states is highly dependent 

not only on the initial state of  the network, but  also on the order in which the processing 

elements are updated.  Incorporation of ra ndomness in the update order of the neurons 

usually yields to better results. Note th at, although the order in which the neurons 

updated is decided at random, the outputs of neurons are still computed deterministically. 

The network is observed to converge almost instantly even for a large number of neurons. 

It is reported in  [Ghanwani et al 94] that computing a set of solutions and then choosing 

the best am ong them dramatically improves the performance of the network, especially 

on smaller graphs.  

 

Exercise: What is the relation between A a nd B for having a feasible solution at each 

local minima? 

 

Now we will try to solve the traveling salesm an problem using Hopfield network. TSP is 

a benchmark attempted by almost all methods developed for combinatorial optimization.  

This problem  is also the one attem pted by the Hopfield optim izer proposed in the 

classical paper [Hopfield 85]. 

 

TSP aim s to find best order am ong the n cities to be visited. Expressed in a slightly 

different way, the visit order i in the tour should be determ ined for the each city α. 
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Introducing a square m atrix containing nxn binary elem ents, the solution can be 

represented in 0-1 program ming (Figure 4.5) .  An entry having value "1" in the ith 

position of row α indicates that the visit order of city α is i.  The matrix corresponds to a 

feasible solution if and only if each row and colum n contains exactly one entry having 

value "1" [Muller 90]. 

 
Figure 4.5. Representation of the tour of Figure 4.2.b by an nxn matrix, in which the rows 

corresponds to the cities while columns are indicating the order of visit 
 

When a m atrix of neurons is used to repr esent the problem , the energy of the network 

becomes: 

 

 ji

n n

i

n n

j
ji xxwE βα

α β
βα∑∑∑∑

= = = =

−=
1 1 1 1

,2
1   (4.3.9) 

 

where xαi is the output of neuron  αi, wαi,βj  is the connection strength between the units 

αi and βj while wαi,αi is reletad to the bias  θαi such that wαi,αi=2θαi 

 

 

 

For TSP, we have the following constraints: 

1. Each city should be visited exactly once; 
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2. At each position of the travel route, there is exactly one city; 

3. The length of the tour should be the minimum. 

 

An appropriate choice for the cost function is [Abe 91]: 
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where A, B are the Lagrange m ultipliers used to combine the constraints in the cost 

function.  

 

The cost function can be written as  
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 (4.3.11) 

 

In order to have the cost function of Eq. (4.3 .11) in a form similar to the energy function 

given in Eq. (4.3.9) it can be reorganized as: 
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Since the constant terms have no effect on the location of the minima of the cost function, 

they can be elim inated.  Furtherm ore, xαi=xαi2 whenever xαi∈{0,1}. Therefore, the cost 

function can be written as:  
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     (4.3.13) 

 

Compare the energy function given by Eq. (4.3 .9) and the cost function given in Eq. 

(4.3.13).  Setting the weights as:  

 

         ))(1()21()21( 1,1,, −+ +−−−−−−= ijijijijji DdBAw δδδδδδδ αβαβαβαββα  (4.3.14) 

 

makes the energy function order preserving.  The constraints can be m ade equally 

weighted by setting A=B. In such a case the connection weights become: 

 

  ))(1()4( 1,1,, −+ +−−−+−= ijijijijji DdAw δδδδδδδ αβαβαβαββα  (4.3.15) 

 

 In order to have a feasible energy function, the inequality  

 

 A D d> 2 max( )
,α β

αβ  (4.3.16) 

 should be satisfied [Abe 91]. 

 

The method proposed in  [Aiyer et al 90] also optimizes the Hopfield and Tank approach. 

This m ethod is based on the eigenvalue anal ysis of the connection m atrix used in 

[Hopfield 85].  The improved weight matrix proposed in (Aiyer et al 1990) is: 
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