
 Dr Ogunsola ARTIFICIAL NEURAL NETWORKS CHAPTER 4

59

CHAPTER IV

 Combinatorial Optimization by
Neural Networks

 Several authors have suggested the use of neural networks as a tool to provide

approximate solutions for com binatorial optimization problems such as graph m atching,

the traveling salesman problem, task placement in a distributed system, etc.

In this chapter, we f irst give a brief description of combinatorial optimization problems.

Next we explain in general how neural networks can be used in com binatorial

optimization and then introduce Hopfield network as optim izer for two well known

combinatorial optimization problems: the gr aph partitioning and the traveling salesm an.

Hopfield optim izer solves com binatorial optimization problem s by gradient descent,

which has the disadvantage of being trapped in local minima of the cost function.

The efficiency of neural networks in so lving of NP_hard com binatorial optim ization

problems has been investigated by several researchers [Bruck and Goodm an 88, 90, Yao

92]. It has been shown that even finding approxim ate solutions to NP_hard problems is

not an easy task. By the use of techniques of complexity theory, it has been proved that

no network of polynom ial size exists to solv e the traveling salesm an problem unless

NP=P [Bruck and Goodman 1990]. However, their parallel nature and good perform ance

in finding approximate solution make the neural optimizers interesting.

Dr Ogunsola ARTIFICIAL NEURAL NETWORKS CHAPTER 4

60

4.1 Combinatorial Optimization Problems

The problems typically having a large but finite set of solutions among which we want to

find the one that m inimizes or m aximizes a cost function are often referred as

combinatorial optimization problems. Since any m aximization problem can be reduced

to a m inimization problem sim ply by changi ng the sign of the cost function, we will

consider only the m inimization probl em with no loss of generality. An instance of a

combinatorial optim ization problem can be form alized as a pair (S,g). The solution

space, denoted S, is the f inite set of all possible solutions. The cost function, denoted by

g, is a m apping from the set of solu tions to real num bers, that is, g S→R [Aarts and

Korst 89]. In the case of m inimization, the problem is to find a solution S* ∈ S, called

globally-optimal solution, which satisfies

 S g S
S S

i
i

* min ().=
∈

 (4.1.1)

Notice that for a given instance of the probl em, such an optim al solution m ay not be

unique.

 Optimization problem s can be divided into classes according to the tim e required to

solve them. If there exists an algorithm that solves the problem in a time that grows only

polynomially with the size of the problem , then it is said to be polynom ial. The set of

polynomial time problems, denoted P, is a subclass of another class called NP. Here NP

stands for non-deterministic polynomial, im plying that a polynom ial tim e algorithm

exists for a nondeterministic Turing machine. However for the problem s in NP but not

P, there exists neither a polynom ial tim e algorithm for determ inistic Turing machine

(although it exists for nondeterministic Turing Machine) nor a proof the non-existence of

such an algorithm. In spite of unavailability of polynomial time algorithms to solve this

Dr Ogunsola ARTIFICIAL NEURAL NETWORKS CHAPTER 4

61

kind of problem s, a "guess" of the solution can be tested in polynom ial time to find out

whether or not it is the right one.

Exercise: Explain nondeterm inistic polynom ial problem s in term s of Turing m achine

very briefly.

An important subclass of NP is the NP_complete problems. They are problems in NP and

characterized by the fact that each problem in the class can be reduced to any other

member in polynom ial time. Therefore, if one could find a determ inistic algorithm that

solves one of the NP_complete problems in polynomial time, then all of the NP_complete

problems could be solved in polynom ial time. In that case, P and NP_com plete would be

the same class. The probable situations are sketched in Figure 4.1. Emprically, the time it

takes to solve an NP_com plete problem tends to scale exponentially with the size of the

problem [Hertz et al 91, Garey and Johnson 79]

Figure 4.1 The class of NP problems a) assuming that P≠NP
b) if any p∈NP_complete becomes p∈P, then it implies P=NP

Exercise: Explain the reduction of one problem to another in polynomial time.

A combinatorial optimization problem of a major theoretical and practical interest, is the

traveling salesman problem (TSP), and it has been subj ect of m uch work [Lawler et al

85]. This problem is NP_com plete, and ther efore com putationally intractable f or large

instances of the problem . It is of great prac tical use in various im portant areas such as

NP

P

NP-complete

NP

P=NP-complete

Dr Ogunsola ARTIFICIAL NEURAL NETWORKS CHAPTER 4

62

circuit placement in VLSI, tool m otion in manufacturing, network design etc. Thus the

development of m ethods searching for solutions that are close to the optim um, and yet

not excessively tim e consum ing, is the source for continued research. In the TSP, the

shortest closed path traversing each city under consideration exactly once is searched.

For TSP, the number of cities determines the size of the problem (Figure 4.2).

Figure 4.2 The traveling salesman problem a) an instance with 4 cities b) the optimum solution
b) a nonoptimum solution c) non feasible solution having some unvisited cities

Another problem that we will consider in this chapter because of its sim plicity in

designing a neural optim izer is the vertex cover problem . It is also an NP _complete

problem, therefore no efficient algorithm s for its exact solution is available when the

number of nodes in the graph is large. The pr oblem size is determ ined by the num ber of

nodes in the graph for which a minimum cover is searched.

The form al problem can be stated as follows: Let G=(V,E) be a graph where V={v1,

v2,..,vN} is the vertices and E={(vi,vj)} is the edges of the graph. A cover C of G is a

subset of V such that for each edge (vi, vj) in E, either vi or vj is in C. A minimum cover

Dr Ogunsola ARTIFICIAL NEURAL NETWORKS CHAPTER 4

63

of G is a set C* such that the number of nodes in C* is the minimum among all the covers

of G, that is |C*|≤|C|.

For exaple for the sam ple graph given in Figure 4.3, the covers are C1=(a,b,c,d,e), C2=(a,b,c,d),

C3=(a,b,c,e), C 4=(a,b,d,e), C 5=(a,c,d,e), C 6=(b,c,d,e), C 7=(a,b,e), C 8=(a,d,e), C 9=(b,c,d),

C10=(b,c,e), C11=(b,d,e), C12=(b,e) and the minimal cover is C12=(b,e).

Figure 4.3 A sample graph

If we have to solve an NP _complete problem , then a very long com putation m ay be

needed for an exact solution. The optim um solution of the vertex cover problem can be

obtained by enum erating all the covers and then selecting the m inimum one. However

such an enum erative search for the exact optim um solution have a tim e complexity of

O(2n), where n is the num ber of vertices in the graph. Being an NP com plete problem,

finding the exact m inimum cover of G is not practical when the num ber of vertices is

very large. Thus, in some cases, approximate algorithms are preferred [Will 86].

Exercise: Explain what approximate solutions may be used for vertex cover problem.

A heuristic solution to the problem using a greedy approach m ay be established as

follows: First, the node having the highest de gree in G is selected and included in C +,

that is the cover being generated. Then, the node and all its adjacent edges all together

with the related term inal nodes are rem oved from G and the procedure is repeated until

all nodes in G have been removed.

a

b c

d e

Dr Ogunsola ARTIFICIAL NEURAL NETWORKS CHAPTER 4

64

4.2 Mapping an Optimization Problems onto Neural Networks

Solving a com binatorial optim ization problem aim s to f ind the "best" or "optim al"

solution am ong a finite or countably infinite num ber of alternative solutions. As an

alternative to the conventional optim ization methods, neural networks are used for the

solution of com binatorial optim ization problem s. In general, a neural optim izer is a

neural network whose neurons are affecti ng the problem solution. For instance neurons

affecting the (city, position) pair of the tour can be used in the neural optim izer for

solving the traveling salesm an problem . If a neuron is "on", this im plies that the

corresponding city should be visite d in the given position in the approximately optimal

solution. Then strongly inhibitory links are established between neurons, which represent

incompatible elements of the solution; for ex ample, a city should not be visited twice,

and a position should not be occupied by two di fferent cities. Furtherm ore, inhibitory

links representing the cost are placed between neurons. For exam ple, the intensity of

inhibitory links can represent the distances between cities in the traveling salesm an

problem. Once the m odel is set up, it is allowed to relax dynam ically to a steady-state

which should be of "m inimum energy" re presenting a quasi-m inimal cost solution

[Hopfield and Tank 85, Gelenbe 94].

 Hopfield network, Boltzm ann m achine, m ean field network, Gaussian m achine and

several other neural networks can be used as neural optim izers. The units in these

networks tend to optim ize a global functi on of the state space, by using only local

information. Mean Field, Boltzm ann and Gaussian machines are stochastic in nature and

allow escaping from local optima.

In the following, how neural networks can be used to solve com binatorial optimization

problems is explained in general: An instan ce of a com binatorial optimization problem

can be considered as a tuple (S,S',g) where S is the finite set of solutions; S' is the set of

feasible solutions that satisf y the constraints of the problem ; and g: S→R is the cost

Dr Ogunsola ARTIFICIAL NEURAL NETWORKS CHAPTER 4

65

function assigning a real value to each solution. The aim is to find a feasible solution for

which the cost function is optimal [Aarts and Korst 89].

In order to use a neural optim izer to solve combinatorial optimization problems, the state

space of the network is m apped onto the set of solutions. The state space X of a neural

optimizer is the set of all possible state vectors x whose com ponents correspond to the

neuron outputs. For this purpose, first the given problem is form ulated as a 0-1

programming problem. Then, a neural network is defined such that the state of each unit

determines the value of a 0-1 variable. Thus , the neural network im plements a bijective

(one to one and onto) function m: X → S. The next step is to determ ine the strengths of

the connections such that the energy function is order-preserving.

The energy function E of a neural network that im plements a m inimization problem

(S,S',g) is called order-preserving if

 g(m(xk)) < g(m(xl)) ⇒ E(xk) < E(xl). (4.2.1)

for any xk, xl ∈X with m(xk), m(xl) ∈ S'

Exercise: Explain order preservation in terms of traveling salesman problem.

Another desired property of the network is f easibility. Let X* to denote the set of stable

states of a neural network. The energy function E of the neural network is called feasible

if each local minimum of the energy function corresponds to feasible solution, that is

 m(X*) ⊆ S' (4.2.2)

where

 m(X*) = { Si ∈ S | ∃xk ∈ X * : m(xk) = Si } . (4.2.3)

Dr Ogunsola ARTIFICIAL NEURAL NETWORKS CHAPTER 4

66

Feasibility of the energy f unction implies that the solution achieved by the network will

always be a feasible one, since a neural optimizer always converges to a configuration x∈

X*

Exercise: Explain feasibility in terms of traveling salesman problem

Note that, if the energy function is order pr eserving, then the energy will be m inimal for

configurations corresponding to an optim al solution (Figure 4.4). Furtherm ore, if the

energy function is feasible, the network is gua ranteed to converge to a feasible solution.

Hence, feasibility and order-preservation of the energy f unction imply that the network

will tend to f ind an optim al feasible solution for the given instance of the combinatorial

optimization problem.

Figure 4.4: The goal of a neural optimizer is to converge to the global m inimum of the energy
function

Further notice that if {S*}⊂S'-m(X*), where S* is the m inimum solution as defined by

Eq. (4.1.1), in such a case, the neural network will never converge to a state

Dr Ogunsola ARTIFICIAL NEURAL NETWORKS CHAPTER 4

67

corresponding to the m inimum solution, but to a near m inimum one. The neural

optimizers are usually designed such that m(X*)=S'

4.3. Hopfield Network as Combinatorial Optimizer

In Section 4.2, we explained how neural ne tworks could be used for com binatorial

optimization in general. In this section, we will consider the Hopfield network in

particular. We will explain the design process, that is how the num ber of units and the

weights of the connections are decided, th rough the NP-com plete problems provided in

Section 4.1.

Consider the continuous valued asynchronous Hopfield model in which the outputs of the

neurons are computed from its inputs using the sigmoidal relation. That is, for neuron i, it

is in the form:

 x f a ai i i= = +() (tanh())1
2 1 κ (4.3.1)

where κ is the gain constant and ai is the activation determined by the equation:

 ij

N

j
jii xwa θ+= ∑

=1
 (4.3.2)

As in the case of associative m emory give n in Chapter 3, we will consider again the

extreme case κ→ ∞. However, the output transfer functi on of the neurons here is shifted

so that it takes values between 0 and 1, in spite of -1 and 1.

Still in this case, the energy function is [Hopfield 84, Hopfield and Tank 85]:

Dr Ogunsola ARTIFICIAL NEURAL NETWORKS CHAPTER 4

68

 E w x x xji i
j

N

i

N
j i

i

N
i= − −

== =
∑∑ ∑1

2
11 1

θ (4.3.3)

where xi is the output of neuron i, wji is the connection weight from neuron j to neuron i,

θi is the input bias to neuron i and N is the number of neurons in the network.

Notice that the energy function is bounded and has negative derivative when xi∈{0,1}, so

it is a Lyapunov function. Therefore, the ener gy is to be m inimized by the Hopfield

network's state transitions. Furtherm ore notice that x=x2 whenever x∈{0,1}, hence the

energy can be reorganized as:

 E w x xji i
j

n

i

n
j= −

==
∑∑1

2
11

 (4.3.4)

where wji=2θi

Exercise: W hat happens to the restriction wii=0? Is it still necessary for binary state

Hopfield Network?

Now our goal is to represent the vertex cove r problem by a Hopfield network so that the

cost of the problem will be m inimized as the energy of the network decreases at each

step.

A solution to the vertex covering problem has the following constraints:

1. Every edge in the graph must be adjacent to at least one of the vertices in the cover,

2. There should be as few vertices in the cover as possible.

The first constraint is necessary for the feasibility. The second one is, in fact, not a

constraint but a statem ent for the m inimization of cost function. The problem can be

represented by a neural network in which each neuron corresponds to a vertex in the

Dr Ogunsola ARTIFICIAL NEURAL NETWORKS CHAPTER 4

69

graph. The outputs of neurons indicate whethe r the corresponding vertex is included in

the cover or not. The case xi=1 indicates that vertex i is in the cover while xi=0 indicates

it is not.

The energy function should be formed so that it satisfies the constraints that we discussed

above. W e are thus dealing with a special case of a very general class of problem s,

namely to find the m inimum of a function in the presence of constraints. The standard

method of solution is to introduce the constraint via constants called Lagrange multipliers

into the cost function, so the m inimum of th e cost function autom atically satisfies the

constraints for the feasibility.

Let a 0-1 variable eij be assigned value 1 if there is an edge from vertex i to vertex j in the

graph, and it is 0 otherwise. Below, the cost function to be m inimized is formulated as 0-

1 programming (Ghanwani 94):

 C A e x e x x e B xij
j

N

i

N
i

j

N

i

N
ij i j

j

N

i

N
ij i

i

N
() ()x = − + +

== == == =
∑∑ ∑∑ ∑∑ ∑

11 11 11 1
2 (4.3.5)

The term with coefficient A in Eq. (4.3.5) is zero when the requirem ent for a valid cover

has been met. That is, all the edges in the graph are adjacent to at least one of the vertices

in the cover. The term with coefficient B increases the energy by an am ount proportional

to the number of vertices in the cover, em phasizing minimality. The constant part of the

cost function can be dropped without affec ting the solution. Hence the cost function

becomes

 ∑∑∑∑∑
== == =

++−=
n

i
iij

n

i

n

j
jiij

n

i

n

j
i xBexxexAC

11 11 1
)2()(x (4.3.6)

Dr Ogunsola ARTIFICIAL NEURAL NETWORKS CHAPTER 4

70

 By com paring the energy function given in Eq. (4.3.3) with the cost function in Eq.

(4.3.6), we obtain:

 w Aeij ij= −2 (4.3.7)

and

 θi ij
i

n
A e B= −

=
∑2

1
 (4.3.8)

By this setting of the connection weights a nd thresholds, the energy function m inimizes

the cost function. In asynchronous network, the trajectory of states is highly dependent

not only on the initial state of the network, but also on the order in which the processing

elements are updated. Incorporation of ra ndomness in the update order of the neurons

usually yields to better results. Note th at, although the order in which the neurons

updated is decided at random, the outputs of neurons are still computed deterministically.

The network is observed to converge almost instantly even for a large number of neurons.

It is reported in [Ghanwani et al 94] that computing a set of solutions and then choosing

the best am ong them dramatically improves the performance of the network, especially

on smaller graphs.

Exercise: What is the relation between A a nd B for having a feasible solution at each

local minima?

Now we will try to solve the traveling salesm an problem using Hopfield network. TSP is

a benchmark attempted by almost all methods developed for combinatorial optimization.

This problem is also the one attem pted by the Hopfield optim izer proposed in the

classical paper [Hopfield 85].

TSP aim s to find best order am ong the n cities to be visited. Expressed in a slightly

different way, the visit order i in the tour should be determ ined for the each city α.

Dr Ogunsola ARTIFICIAL NEURAL NETWORKS CHAPTER 4

71

Introducing a square m atrix containing nxn binary elem ents, the solution can be

represented in 0-1 program ming (Figure 4.5) . An entry having value "1" in the ith

position of row α indicates that the visit order of city α is i. The matrix corresponds to a

feasible solution if and only if each row and colum n contains exactly one entry having

value "1" [Muller 90].

Figure 4.5. Representation of the tour of Figure 4.2.b by an nxn matrix, in which the rows

corresponds to the cities while columns are indicating the order of visit

When a m atrix of neurons is used to repr esent the problem , the energy of the network

becomes:

 ji

n n

i

n n

j
ji xxwE βα

α β
βα∑∑∑∑

= = = =

−=
1 1 1 1

,2
1 (4.3.9)

where xαi is the output of neuron αi, wαi,βj is the connection strength between the units

αi and βj while wαi,αi is reletad to the bias θαi such that wαi,αi=2θαi

For TSP, we have the following constraints:

1. Each city should be visited exactly once;

Dr Ogunsola ARTIFICIAL NEURAL NETWORKS CHAPTER 4

72

2. At each position of the travel route, there is exactly one city;

3. The length of the tour should be the minimum.

An appropriate choice for the cost function is [Abe 91]:

)(

2

)1(
2

)1(
2

)(

1,1,

22

−+
≠

++

−+−=

∑∑∑

∑ ∑∑ ∑

iii

n n n

i

n

i

n

i

n n

i
i

xxxdD

xBxAC

ββα
α αβ

αβ

α
α

α
αx

 (4.3.10)

where A, B are the Lagrange m ultipliers used to combine the constraints in the cost

function.

The cost function can be written as

)(
2

)12(
2

)12(
2

)(

1,1, −+
≠

++

+−+

+−=

∑∑∑

∑∑∑ ∑

∑∑∑ ∑

iii

n n n

i

n

i

n

ii

n

i

n

n

i
i

n

j
ji

n n

i

xxxdD

xxxB

xxxAC

ββα
α αβ

αβ

α
α

β
βα

α

ααα
α

x

 (4.3.11)

In order to have the cost function of Eq. (4.3 .11) in a form similar to the energy function

given in Eq. (4.3.9) it can be reorganized as:

ji

n n n

i
jiji

n

i

n

i

n

i

n

i

n

j
jiij

n n

i

n

nn

i
i

nn

j
ji

nn n

i

xxdD

BxBxxB

AxAxxAC

βα
α β

αβαβ

α
αβα

α β

α
α

α
βααβ

βα

δδδ

δ

δ

∑ ∑∑∑

∑∑∑∑∑ ∑ ∑

∑∑∑∑∑∑ ∑

−+ +−+

+−+

+−=

))(1(
2

1
22

1
22

)(

1,1,

x

 (4.3.12)

Dr Ogunsola ARTIFICIAL NEURAL NETWORKS CHAPTER 4

73

Since the constant terms have no effect on the location of the minima of the cost function,

they can be elim inated. Furtherm ore, xαi=xαi2 whenever xαi∈{0,1}. Therefore, the cost

function can be written as:

ji

n n n

j
jiji

n

i

j

n

j
iij

n

i

nnn

j
jiij

n n

i

n

j

n

j
iij

n

i

nnn

j
ji

nn n

i

xxdD

xxBxxB

xxAxxAC

βα
α β

αβαβ

βααβ
βα

βα
α β

βααβ
βα

βααβ
βα

δδδ

δδδ

δδδ

∑ ∑∑∑

∑∑ ∑∑∑∑ ∑ ∑

∑∑ ∑∑∑∑∑ ∑

−+ +−+

−+

−=

))(1(
2

2

2
)(

1,1,

x

 (4.3.13)

Compare the energy function given by Eq. (4.3 .9) and the cost function given in Eq.

(4.3.13). Setting the weights as:

))(1()21()21(1,1,, −+ +−−−−−−= ijijijijji DdBAw δδδδδδδ αβαβαβαββα (4.3.14)

makes the energy function order preserving. The constraints can be m ade equally

weighted by setting A=B. In such a case the connection weights become:

))(1()4(1,1,, −+ +−−−+−= ijijijijji DdAw δδδδδδδ αβαβαβαββα (4.3.15)

 In order to have a feasible energy function, the inequality

 A D d> 2 max()
,α β

αβ (4.3.16)

 should be satisfied [Abe 91].

The method proposed in [Aiyer et al 90] also optimizes the Hopfield and Tank approach.

This m ethod is based on the eigenvalue anal ysis of the connection m atrix used in

[Hopfield 85]. The improved weight matrix proposed in (Aiyer et al 1990) is:

Dr Ogunsola ARTIFICIAL NEURAL NETWORKS CHAPTER 4

74

w A B A

C A A A
n

Dd

i j ij ij ij

n
j i j i

α β αβ αβ αβ

αβ

δ δ δ δ δ δ

δ δ

,

, ,

() ()

() ()

= − − − − −

− +
− −

− ++ −

1 1 2

2
1

1
2 1 1

 (4.3.17)

