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CHAPTER V 
 

 Annealing by Stochastic Neural 
Networks for Optimization  

 
 Two major classes of optimization techniques are the deterministic gradient methods and 
stochastic annealing methods. Gradient de scent algorithms are greedy algorithm s, which 
are subject to a fundamental limitation of being easily trapped in local minima of the cost 
function.  
 
Hopfield networks usually converge to a lo cal minimum of energy function. Because of 
its deterministic input-output relation of the un its in the network, the network is not able 
to escape from  local m inima. Although such a behavior m ay be desirable for an 
associative m emory application, one usually  needs to obtain the global optim um or a 
nearly optimum points for optimization applications.  
 
This problem  is overcom e by the use of st ochastic annealing algorithm s since they 
provide opportunity to escape from  local m inima. A highly attractive feature of the 
Boltzmann m achine is  its capability of escaping local m inima through a relaxation 
technique based on simulated annealing [Hinton et al 83]. 
 
 However, the use of sim ulated annealing is also responsible for an excessive 
computation tim e requirem ent that has hi ndered experim entation with the Boltzm ann 
machine. Not only does sim ulated anneali ng require iterations at a sequence of 
temperatures that defines the annealing cycle but also each iteration requires m any 
sweeps of its own. In order to overcom e this major limitation of the Boltzmann machine 
a mean field approxim ation may be used, according to which the binary state stochastic 
neurons of the Boltzmann machine are replaced by deterministic mean values [Amit et al 
85]. 
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In this chapter, first we introduce the conventional Simulated Annealing algorithm for the 
solution of com binatorial optimization problems. Then two stochastic networks nam ely, 
Boltzmann machine and m ean field network, ar e introduced and it is explained how the 
annealing technique can be implemented by using these networks.  
 
The Gaussian m achine [Aiker et al 91], whic h is a stochastic neural network developed 
over the continuous Hopfield m odel allowing escape from local minima, is also included 
. 
 
 
5.1. Statistical Mechanics and the Simulated Annealing 
 
The starting point of statistical m echanics is an energy function. W e consider a physical 
system with a set of  probabilistic states χ={x}, each of which has energy E(x). For a 
system at a tem perature T>0, its state χ varies with tim e, and quantities such as E that 
depend on the state fluctuates. Although there must be some driving mechanism for these 
fluctuations, part of the idea of tem perature involves treating them  as random . When a 
system is first prepared, or after a change of parameters, the fluctuations has on average a 
definite direction such that the energy E decreases. However, som e times later, any such 
trend ceases and the system just fluctuates around a constant average value. Then we say 
that the system is in thermal equilibrium.  
 
A fundam ental result from  physics tells us that in therm al equilibrium  each of the 
possible states x occurs with probability, determ ined according to Boltzmann-Gibbs 
distribution, 
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is called the partition function and it is independent of the state x but temperature. 
 
The Boltzm ann-Gibbs distribution is usually derived from  very general assum ptions 
about m icroscopic dynam ics of m aterials. The coefficient T is related to absolute 
temperature Ta of the system as 
 
 aBTT κ=    (5.1.3) 

 
where coefficient κB is Boltzmann's constant having value 1.38x10 -16 erg/K. 
Interestingly enough, the sam e distribution can  also be achieved in the viewpoint of 
information theory. Although the tem perature T has no physical m eaning in inform ation 
theory, it is interpreted as a pseudo temperature in an abstract manner. 
 
Given a state distribution function fd(χ), let P(χ(k)=xi) be the probability of  the system  
being at state xi at the present tim e k. Furthermore, let P( χ(k+1)=xj | χ(k)=xi)  represent 
the conditional probability of  next state xj given the present state is xi. The notation P(xi) 
and P( xj⏐xi) will be used sim ply to s denote these probabilities respectively. In 
equilibrium the state distribution and the state transition reaches a balance satisfying: 
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Therefore, in equilibrium  the Boltzm ann Gi bbs distribution given by equation (5.1.1) 
results in: 
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where ∆E=E(xj)-E(xi). 
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Figure 5.1 Relation between temperature and probability of the states [Kung 93] 

 
The Metropolis algorithm provides a sim ple m ethod for simulating the evolution of 
physical system in a heat bath to therm al equilibrium [Metropolis et al]. It is based on 
Monte Carlo Simulation technique, which aim s to approximate the expected value < g(χ
)> of som e function g( χ) of a random  vector χ with a given density function fd(χ). For 
this purpose several χ vectors, say χ=Xk k=1..K, are randomly generated according to the 
density function fd(χ) and then Yk is found as Yk=g(Xk). By using the strong law of 
large numbers:  
 
 >>=<=<∑∞→

)(lim 1 χYY gkk

k
KK

 (5.1.7) 

 
the average of generated Y vectors can be used as an estimate of <g(χ)> [Sheldon 1989]. 
 
In each step of the Metropolis algorithm , an atom  (unit) of the system  is subjected to a 
small random displacement, and the resulting change ∆E in the energy of the system  is 
observed. If ∆E≤0, then the displacem ent is accepted, and the new system  configuration 
with the displaced atom is used as the starti ng point for the next step  of the algorithm. If, 
on the other hand, ∆E>0, then the algorithm  proceeds in  a probabilistic m anner so that 
the configuration with the displaced atom is accepted with a probability given by: 
 
 P E e E T( ) /∆ ∆= −  (5.1.8) 
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Provided enough num ber of transitions in the Metropolis algorithm, the system  reaches 
thermal equilibrium . Thus, by repeating the basic steps of Metropolis algorithm , we 
effectively sim ulate the m otions of the at oms of a physical system  at tem perature T.  
Moreover, the choice of P(∆E) defined in Eq. (5.1.8) ensures that therm al equilibrium is 
characterized by the Boltzmann-Gibbs distribution provided in Eq. (5.1.5). 
 
Referring to Eq. (5.1.5), notice that if  P(xi) > P(xj) implies E(xi) < E(xj), and vice versa. 
So maximizing the probability f unction is equi valent to minimizing the energy f unction. 
Furthermore, notice that this property is independent of the tem perature, although the 
discrimination becomes more apparent as the temperature decreases (Figure 5.1).  
 
Therefore, the tem perature parameter T provides a new free param eter for steering the 
step size tow ard the global optim um. With a high temperature, the equilibrium  can be 
reached more rapidly. H owever, if the tem perature is too high, all the states w ill have a 
similar level of  probability. O n the other hand, w hen T→0, the average state becom es 
very close to the global m inimum. This idea, though very attractive at the first glance, 
can not be implemented directly in practice. In fact, with a low temperature, it will take a 
very long time to reach equilibrium  and, more seriously, the state is m ore easily trapped 
by local m inima. Therefore, it is necessary to start at a high tem perature and then 
decrease it gradually. Correspondingly, the probable state then gradually concentrate 
around the global minimum (Figure 5.2). 
 
 
 

 

Figure 5.2 The energy levels adjusted for high and low temperature 
  
This has an analogy with metallurgical annealing, in which a body of metal is heated near 
to its m elting point and is then slowly cool ed back down to room  tem perature. This 
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process eliminates dislocations and other crystal lattice disruptions by therm al agitation 
at high tem perature. Furtherm ore, it preven ts the form ation of new dislocations by 
cooling the m etal very slowly.  This provide s necessary tim e to repair any dislocations 
that occur as the tem perature drops. The esse nce of this process is that global energy 
function of the metal will eventually reach an absolute minimum value. 
 
If the material is cooled rapidly, its atom s are often captured in unfavorable locations in 
the lattice. Once the tem perature has dropped far below the m elting point, these defects 
survive forever, since any local rearrange ments of atom s costs m ore energy than 
whatever available in therm al fluctuations. The atomic lattice thus rem ains captured in a 
local energy minimum. In order to escape from local minima and to have the lattice in the 
global energy m inimum, the therm al fluctua tions can be enhanced by reheating the 
material until energy-consum ing local rearra ngements occur at a reasonable rate. The 
lattice imperfections then start to m ove and annihilate, until the atom ic lattice is f ree of 
defects-except for those caused by therm al fluctuations. These can be gradually reduced 
if the tem perature is decreased so slow ly th at therm al equilibrium  is m aintained at all 
times during the cooling process. How m uch time must be spent for the cooling process 
depends on the specific situation. A great deal  of experience is required to perform  the 
annealing in an optim al w ay. If  the tem perature is decreased quickly, som e therm al 
fluctuations are frozen in. On the other ha nd, if one proceeds too slowly, the process 
never ends. 
 
The am azing thing about annealing is that th e statistical process of therm al agitation 
leads to approxim ately the sam e f inal energy state. This result is independent of the 
initial condition of the m etal and any of the de tails of the statistical annealing process. 
The m athematical concept of sim ulated ann ealing derives from  an analogy with this 
physical behavior. 
 
The simulated annealing algorithm, is a variant of the Metropolis algorithm in which the 
temperature is tim e dependent. In analogy with metallurgical annealing, it starts with a 
high temperature and gradually decreases it. At  each temperature, it applies several times 
the update rule given by Eq. (5.1.8). An ann ealing schedule specifies a finite sequence of 
temperature values and a finite num ber of transitions attem pted at each value of the 
temperature. The annealing schedule developed by [Kirkpatrick et al 1983] is as follows. 
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The initial value T0 of the tem perature is chosen high enough to ensure that virtually all 
proposed transitions be accepted by the sim ulated annealing algorithm. Then the cooling 
is perform ed. At each tem perature, enough tran sitions are attem pted so that there is a 
predetermined num ber of transitions per expe riment on the average. At the end, the 
system is frozen and annealing stops if the desired number of acceptances is not achieved 
at predeterm ined num ber of successive tem peratures. In the following, we provide the 
annealing procedure in more detail:  
 

SIMULATED ANNEALING 
 

Step 1. Set Initial values: assign a high value to tem perature as T(0)= T0, decide on 
constants κT, κA and κS, Typical values for which are  0.8<κT<0.99, κA=10, and 
 κS=3.  

Step 2. Decrement the temperature: )1()( −= kTkT Tκ where κT is a constant sm aller 

but close to unity. 
Step 3. Attempt enough number of transitions at each temperature, so that there are κA 

accepted transitions per experiment on the average. 
Step 4. Stop if the desired num ber of acceptances is not achieved at κS successive 

temperatures else repeat steps 2 and 3. 
 
 
A very im portant property of sim ulated annea ling is its asym ptotic convergence. It has 
been proved in [Gem an and Gem an 84] that if T(k) at iteration k is chosen such that it 
satisfies 
 

 T k T
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0
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,  (5.1.9) 

 
provided the initial tem perature T0 is high enough, then the system  will converge to the 
minimum energy configuration.  
 
The m ain drawback of sim ulated annealing is the large am ount of com putational tim e 
necessary for stochastic relaxation. Many elem entary transform ations are perform ed at 
each temperature step in order to reach a near equilibrium state.  
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5.2 Boltzmann Machine 
 
Boltzmann machine [Hinton et al 83] is a c onnectionist model having stochastic nature. 
The structure of the Boltzm ann machine is similar to Hopfield network, but it adds som e 
probabilistic component to the output function. It uses sim ulated annealing concepts, in 
spite of the determ inistic nature in state tran sition of the H opfield network [Hinton et al 
83, Aarts et al 1986, Allwright and Carpenter 1989, Laarhoven and Aarts 1987]. 
 
A Boltzmann machine can be viewed as a recurrent neural network consisting of N two-
state units. Depending on the purpose, the states can be chosen from binary space, that is 
x∈{0,1}N or from  bipolar space x∈{-1,1}N . The energy function of the Boltzm ann 
machine is: 
 

 E w x x xij i
j

N

i

N
j i

i

N
i( )x = − −∑∑ ∑1

2
θ   (5.2.1) 

 
The connections are symmetrical by definition, that is wij=wji. Furthermore in the bipolar 
case, the convergence of the m achine requires wii=0 (or equivalentltly θi=0). However in 
the binary case self-loops are allowed. 
 
The objective of a Boltzm ann m achine is to  reach the global m inimum of its energy 
function, which is the state having m inimum energy. Sim ilar to sim ulated annealing 
algorithm, the state transition m echanism of Boltzm ann Machine uses a stochastic 
acceptance criterion, thus allowing it to escap e from  its local m inima. In a sequential 
Boltzmann m achine, units change their states  one by one, while they change state all 
together in a parallel Boltzmann machine . 
 
Let X denote the state space of the m achine, that is the set of all possible states. Am ong 
these, the state vectors di ffering only one bit are called neighboring states. The 
neighborhood Nx ⊂X is defined as the set of all neighboring states of x. Let a x j  to 
denote the neighboring state that is obtained from  x by changing the state of neuron j. 
Hence, in binary case we have 
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In bipolar case, this becomes: 
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The difference in energy when the global state of the machine is changed from x to x j  is: 
 
 ∆E E Ej j( ) ( ) ( )x x x x= −  (5.2.4) 

 
Note that the contribution of the connections wkm, k ≠j, m≠j, to  E(x) and E j( )x  is 

identical, furthermore wij=wij. For the binary case, by using equations (5.2.1) and (5.2.2), 
we obtain 
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For the bipolar case it is  
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Therefore, the change in the energy can  be com puted by considering only local 
information. 

  
In a sequential B oltzmann m achine, a trial f or a state transition is a two-step process. 
Given a state x, first a unit j is selected as a candidate to  change state. The selection 
probability usually has unif orm distribution over the units. Then a probabilistic f unction 
determines w hether a state transition w ill occur or not. The state x j  is accepted with 
probability  
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where T is a control parameter having analogy in temperature. Initially the temperature is 
set large enough to accept alm ost all state tran sitions with probability close to 0.5, and 
then T is decreased in tim e to zero (Figure 5. 3). W ith a proper cooling schedule, the 
sequential Boltzm ann m achine converges asym ptotically to a state having m inimum 
energy. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3. Acceptance probability in Boltzmann machine for different temperatures 
 
A Boltzmann machine starts execution with a random  initial configuration. Initially, the 
value of T is very large. A cooling schedul e determines how and when to decrem ent the 
control parameter. As T → 0, less and less state transitions occur. If no state transitions 
occur for a specified num ber of trials, it is decided that the Boltzm ann m achine has 
reached the final state.  
 
A state x* ∈ X is called a locally minimal state, if  
 
 ∆E j 1 Nj( * *) ..x x ≥ =0  (5.2.8) 

 
Note that, a local minimum is a state whose energy can not be increased by a single state 
transition. Let the set of all local m inima be denoted by X*. While the Hopfield network 
is trapped mostly in one of  these local minima, the Boltzmann machine can escape from  
the local minima because of its probabilistic nature. Although the machine asymptotically 
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converges to a global minimum, the finite-time approximation of the Boltzmann Machine 
prevents guaranteeing convergence to a state with minimum energy. However, still the 
final state of the machine will be a nearly minimum one among X*. 
 
Use of Boltzm ann machine as a neural optim izer involves two phases as it is explained 
for the H opfield netw ork in C hapter 4. In  the first phase, the connection weights are 
determined. For this purpose, an energy functi on for the given application is decided. In 
the non-constrained optim ization applicati ons, the energy function can be directly 
obtained by using the cost function. However, in the case of constrained optimization, the 
energy function must be derived using both the original cost function and the constraints. 
The next step is to determ ine the connection weights { wij} by considering this energy 
function. Then in the second phase, the m achine searches the global m inimum through 
the annealing procedure. 
 
 
5.3 Mean Field Theory  
 
Although the use of sim ulated annealing provides for escaping from  the local m inima, it 
results in an excessive com putation time requirement that has hindered experim entation 
with the B oltzmann m achine. In order to  overcom e this m ajor lim itation of  the 
Boltzmann machine, a mean field approximation may be used. In mean field network, the 
binary state stochastic neurons of the Boltzm ann machine are replaced by determ inistic 
analogue neurons [Peterson and Anderson 87]. 
 
Mean-field approximation is a well-known con cept in statistical physics [Glauber 63]. It 
can not be denied that in the context of a stochastic m achine it would be desirable to 
know the states of the neurons at all time. However, we must nevertheless recognize that, 
in the case of a network with a large num ber of neurons, the neural states contain vastly 
more inf ormation than w hat is required in pr actice. In fact, to answer the m ost of the 
physical questions about the stochastic behavi or of the network, we need only to know 
the average values of neural states. There is a close analogy between  Hopfield Networks 
and som e sim ple m odels of Magnetic Materials in statistical physics. The analogy 
becomes particularly useful when we generali ze the networks to use stochastic units, as 
we considered in Boltzmann machine. 
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In real neural networks, neurons fire with a variable strength, and there are delays in 
synapses, random fluctuations from the release of transmitters in discrete vesicles, and so 
on. These are effects that we can loosely think of as noise, and crudely are represented by 
thermal fluctuations in the ising model. 
 
The therm al f luctuations can be introduced  into the Hopfield m odel by replacing the 
deterministic units of the Hopf ield network with the stochastic units in an analogy to 
spins in Ising model of Magnetic materials [Hertz et al 91] . 
 
Consider the discrete Hopfield network that we considered previously, where states were 
restricted to be x∈{-1,1}n. Now lets replace the determ inistic units in this network by 
stochastic units [Hinton and Sejnowski 83, Peretto 84]  that behave in the f ollowing 
manner: 
 

 χ i
T i

T i
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1 1
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where fT(α) is the sigmoid function: 
 

 f a
e
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+ −

1
1 2  (5.3.2) 

 
Moreover, T is the  pseudo tem perature. Such a stochastic unit m ay be interpreted as 
ordinary deterministic threshold unit with a random threshold θ drawn from a probability 
density ′fT ( )θ . 
 
Notice that the sigmoid function defined by equation (5.3.1) has the property 
 
  1− = −f a f aT T( ) ( )  (5.3.5) 

 
In the case of the network having a si ngle element, the average value for χ=χ1 can be 
calculated as: 
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fh(a/T)=tanh(a/T) function has the sam e kind of shape as fT(α) except that it goes from  -
1 to 1 instead of 0 to 1. In fact  

 
 f a T a T f ah T( / ) tanh( / ) ( )= = −2 1 (5.3.7) 
 
It should be not forgotten that, at a given tim e, χ itself is still either +1 or -1. It f lips back 
and forth random ly between these two values, taking on one of them  m ore frequently 
according to fT(a). 
 
In the case of m any interacting neurons, the problem  is not easily solved. The evolution 
of a spin, represented by χi depends on the activation  
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which involves random variables χj that themselves fluctuate back and forth. In general, 
there is no way to solve the m any-spin problem  exactly. However, there is an 
approximation, known as the m ean-field appr oximation, which often yields adequately 
good results. The basic idea of m ean-field approxim ation is to replace the actual 
fluctuating activation potential αj for each neuron j in the network by its average < αj> 
as: 
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Then, we can compute the average <χi > as in the case of single-unit problem: 
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These are still N non-linear equations in N unknowns, but at least they no longer involve 
stochastic variables 
 
The m ean field approxim ation ofte n becom es exact in the lim it of infinite range 
interactions, where each spin interacts with all the others. Crudely speaking this is 
because αi is then the sum  of too many terms, and then the central lim it theorem can be 
applied. Even for short range interactions, for which  wij≈0 if spin i and j are more than a 
few lattice sites apart, m ean field theory can often give a good qualitative description of 
the phenomena. 
 
Mean Field Network was originally proposed  by [Am it et al 85] for being used as 
associative m emory, and exam ined in a se ries of papers [Am it et al 1985b, 1987a, 
1987b]. A detailed theoretical analysis on Mean Field Networks is included [Hertz et al 
1991]. We will explain its use as neural optimizer in the next section. 
 
 
5.4 Mean Field Annealing  
 
As in the case of  Hopfield or Boltzm ann optimizers, the first step of using Mean Field 
network as a neural optim izer is to determ ine the connection weights by considering the 
cost function to be optim ized. Therefore, the solution of  the optim ization problem  is 
determined by the solution of the Eq. (5.3.10) . In fact when the system  has converged, 
the spins for which <χi> ≥  0 have probability P( χi=1) ≥  P(χi= -1) and vice versa. Thus, 
a final decision process sets the spin values to -1 and 1 according to the m ean values <χ

i>. Contrary to sim ulated annealing, this method is intrinsically parallel by nature. The 
convergence process of the mean field algorithm is purely deterministic and is controlled 
by a dynamical system. This reduces the computational effort considerably. 
 
The main drawback of this m ethod is the difficulty in the choice of the param eter T. It 
has no major influence on the quality of  the resu lts when it is chosen in a certain range. 
In addition, the range of possible tem peratures increases with the size of the optim ization 
problem. In order to overcom e the difficulty in  choice of the am bient temperature, mean 
field annealing is proposed.  
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An approach in mean field annealing consists of annealing during the convergence of the 
mean field approximation. That is, the temperature is decreased slowly, while the coupled 
mean field equations for the averages < χj > are solved iteratively. [Soukoulis et al 83, 
Peterson and Anderson 87, Bilbro et al 89, G. L. Bilbro and W .E. Snyder 88, Van den 
Bout and Miller 89, Herault and Niez 89]. This can be done simply by using a continuous 
valued Hopfield network, in which the shape of the sigmoid output function changes as a 
function of tem perature. Mean field anneali ng performs better than sim ulated annealing 
in several optim ization problem s [Van de n Bout and Miller, 1988, 1989, Cortes and 
Hertz, 1989, Bilbro and Snyder 1989]. 
 
The temperature can be slightly decreased fr om a high value to a sm aller one as soon as 
every neuron has been updated once [Herault and Niez 1989]. The system  does not reach 
a near equilibrium state at any tem perature during the convergence process but when the 
temperature is small enough, the system is frozen in a good stable state.  
 
Another approach [ Van den Bout and Miller 88] uses the critical tem perature. During 
cooling process, there is a critical tem perature Tc at which the m ean field variables < χi> 
begin to m ove significantly towards +1 a nd -1. The principle is then to estim ate 
theoretically this critical temperature and to let the system evolve at this temperature until 
equilibrium is reached. Then one decreases th e temperature to near zero and iterates until 
the system has reached a near equilibrium state. 
 
The results obtained by m ean field annealing process are com parable to those obtained 
by the stochastic relaxation of sim ulated a nnealing. Besides, the convergence tim e of 
mean field annealing is faster than it. 
 
 
5.5. Gaussian Machine 
 
An extension of the mean field annealing is the Gaussian machine, whose structure is the 
same as the continuous state asynchronous  Hopfield network except the following 
properties:  
• A Gaussian distributed random noise is added to each input. 
• The gain of the amplifiers is time-variant. 
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The total input si to neuron i is given by formula 
 
 εθ ++= ∑ ii

j
jii xws   (5.5.1)  

 
where wji is the synaptic weight between neurons j and i, xj is the output of neuron  i, θi is 
the input bias and ε is a Gaussian distributed ra ndom noise having zero m ean and σ2 
variance. This noise term breaks the determinism of each neuron in the Hopfield network 
and allows escaping from local minima. The deviation σ is defined as  
 
 σ = kT  (5.5.2) 
 
where k is a constant equal to 8

π  and T is the pseudo-tem perature whose value 

decreases in time to zero. 
 
Gaussian distribution, which is known also  as norm al distribution, has the following 
formula: 
 

 f u e u( ) ( ) /= − −1
2

2 22
πσ

µ σ  (5.5.3) 

 
 where µ is the mean and has value 0 in our case.  
 
The activation value ai of neuron i is changed according to the difference equation  
 

 i
ii s

a
t
a

+
−

=
∆
∆

τ
  (5.5.4)  

  
where τ is the tim e constant that can be set to 1 w ith no loss of  generality. ∆t has the 
range 0 < ∆t ≤ 1. 
 
For the sim ulation of the Gaussian m achine, [Akiyam a et al 91] uses asynchronous 
neuron updates. Changes of the outputs are propa gated to the other neurons immediately. 
The unit of a time step is defined as the period for updating N neurons.  
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The output value xi is determined by the sigmoid function 
 

 x

e

i ai
=

+
−

1

1 Α

  (5.5.5) 

 
as defined previously, where 1/ Α is the gain of the curve and the value of Α is decreased 
in time so that the sigmoid function becomes unit step function. 
 
The Gaussian m achine minimizes the sam e function as Hopfield m odel but can escape 
from local m inima when the noise is  sufficiently large. The param eters Α and T are 
controlled by som e "sharpening" and "anneali ng" schedules respectively. The activation 
level A is started from some large value and decreased in time towards zero. For large A, 
the output takes m iddle-range values between 0 and 1. This allows rough searching for 
energy minima allowing vague decisions. Decreasing A to zero tow ards the end of  the 
simulation provides a means of assigning binary values to the outputs. A is controlled by 
the following hyperbolic scheduling: 
 

 A A
t A

=
+

0
1 / τ

  (5.5.6) 

 
where A0 is the initial value of A and τA is the time constant of the sharpening schedule. 
 
The temperature T is also decreased in time, in turn it decreases the deviation of the noise 
ε. T is controlled by the following hyperbolic annealing schedule: 
 

 T T
t T

=
+

0
1 / τ

  (5.5.7)  

 
where T0 is the initial tem perature and τT is the tim e constant of the annealing schedule, 
which may differ from τA. 
 
The choice of the param eters A0, T0, τA and τT of the Gaussian m achine are critical for a 
good performance in terms of convergence in a shorter time and convergence to a better 
minimum. 
 


