Dr Ogunsola ARTIFICIAL NEURAL NETWORKS CHAPTER 7

CHAPTER VII

Learning in Recurrent Networks

We have exam ined the dynam ics of recurrent neural networks in detail in Chapter 2.
Then in Chapter 3, we used them as associ ative m emory with f ixed weights. In this
chapter, the backpropagation learning algorithm that we have considered for feedforward
networks in Chapter 6 will be extended to recurrent neural networks [Alm eida 87, 88].
Therefore, the weights of the recurrent netw ork will be adapted in order to use it as
associative memory. Such a network is expected to converge to the desired output pattern

when the associated pattern is applied at the network inputs.
7.1. Recurrent Backpropagation

Consider the recurrent system shown in the Figure 7.1, in which there are N neurons,
some of them being input units, and som e others outputs. In such a network, the units,
which are neither input nor output, are calle d hidden neurons. W e will assume a network

dynamic defined as:

B+ (T, +0) (7.1.1)
i

This may be written equivalently as

da;
d—tlz—ai +2Wji f (ai)+ 9| (7.1.2)
]

through a linear transformation.

112

Dr Ogunsola ARTIFICIAL NEURAL NETWORKS CHAPTER 7

input hidden output
neurons neurons neurons

Figure 7.1 Recurrent network architecture

Our goal is to update the weights of the network so that it will be able to rem ember
predefined associations, uk=(uk,yk), u“eR", y*eRM, k=1.. K. With no loss of generality,

we extended here the input vector u such that u=0 if the neuron i is not an input neuron.
Furthermore, we will sim ply ignore the output s of the unrelated neurons. W e apply an

input u® to the network by setting

G=uf i=1.N(7.13)

Therefore, we desire the network with an initial state Xx(0)=x*0 to converge to
whenever uK is applied as input to the network.

The recurrent backpropagation algorithm , updates the connection weights aim ing to

minimize the error

e = 1> (5?7 (7.15)
i

so that the mean error is also minimized
e =<g> (7.1.6)

Notice that, € and e are scalar values while " is a vector defined as previously

113

Dr Ogunsola ARTIFICIAL NEURAL NETWORKS CHAPTER 7

g'=y -x¥ (7.1.7)
whose component ak, i=1..M, is

&K= ai(yf =x) (7.1.8)

In equation (7.1.8) the coefficient ¢j used to discriminate between the output neurons and

the others by setting its value as

(7.1.9)

_J1 if iis an output neuron
' |0 otherwise

Therefore, the neurons, which are not output, will have no effect on the error.

Notice that, if an input Uk is applied to the network and if it is let to converge to a f ixed
point X“*, the error depends on the weight matrix through these fixed points. The learning
algorithm should m odify the connection weight s so that the f ixed points satisf y Eq.
(7.1.4), that is

X< =y (7.1.10)

For this purpose, we let the system to evolve in the weight space along trajectories in the

opposite direction of the gradient, that is

dw ‘
—=-pVe" (7.1.11
e ()

In particular wjj should satisfy

i__ %% (7112
dt é’Wij

Here n is a positive constant named the learning rate, which should be chosen so small

114

Dr Ogunsola ARTIFICIAL NEURAL NETWORKS

Since,

Q& = & (7.1.13)

the partial derivative of e given in Eq. (7.1.5) with respect to Ws; becomes:

k
—Zs (7 1.14)

é’Wsr

On the other hand, since X” is a fixed point, it should satisfy

dxikoo 0 (7.1.15)
de
for which Eq. (7.1.1) becomes

* = f(ZWjix'j‘OO +uik)
]

Therefore ,

koo koo
OX w Xj
L —fr@®) Y —Lw;) (7.1.17)
OWer i I Owgy Wsr
where
f!(aikw)zm | Koo K (7 1 18)
da a= ZJ:W X +U;

Notice that,

i _s5.0s
e SisSir (7.1.19)

(7.1.16)

CHAPTER 7

115

Dr Ogunsola ARTIFICIAL NEURAL NETWORKS CHAPTER 7

where &jj is the Kronecker delta which have value 1 if i=j and 0 otherwise, resulting

DX P85S = Giexg™ (7.1.20)
j

Hence,
5 fr@k) (& xk + 3 ﬁXI"(OO)(ﬂzl)
=T1'(a irXe +) Wi L
Wy ! s i I OWgy

By reorganizing the above equation, we obtain

eo oxy”
i’a a) Z Wy = (@) (7.1.22)
Notice that,

"2

aWsr s

Therefore, Eq. (7.1.22), can be written equivalently as,

ox< k°°
>6; aTI s = f'(a*)s, x* (7.1.24)
j sr j sr
or,
[koo axlj(OO ’ koo koo
Z ((511 —Wj f'(@™)——=3, f'@@™)x (7.1.25)
] ﬂWsr
If we define matrix L** and vector R** such that
LK = 5o fr(ak®
ij = ij — (ai)Wji (7.1.26)

and

116

Dr Ogunsola ARTIFICIAL NEURAL NETWORKS CHAPTER 7

R =6,f'(@) (7.1.27)

the equation (7.1.25) results in

Ly o Ry (7.1.28)
aWSI‘ :

Hence, we obtain,

L9 ke (L)' RxY (7.1.29)
oW

sr

In particular, if we consider the ith row we observe that

7
OWer

X< = (Z(Lkw)ﬁle)xé‘w (7.1.30)
J

Since

()X L ﬁlajrf'(a'j‘w):(l_""o);lf'(a'r“’o)(7.1.31)
J

by using (7.1.27) and (7.1.31) in equation (7.1.30), we obtain

0 koo 1 kooy—1 ¢,/ kooy koo
é’Wsr Xi =(L)ir f (ar)XS (7.1.32)

Insertion of (7.1.32) in equation (7.1.14) and then (7.1.12), results in

d wgy

k)Y ko)t g ok)xke. (7.1.33)

When the network with input u® has converged to X, the local gradient for recurrent
backpropagation at the output of the r'™ neuron m ay be defined in analogy with the

standard backpropagation as

117

Dr Ogunsola ARTIFICIAL NEURAL NETWORKS CHAPTER 7

S¢=1'@")) (L), (7.1.34)

So, it becomes simply

d wsy

_ koo, koo
it —775r XS (7.1.35)

In order to reach the minimum of the error ek, instead of solving the above equation, we

apply the delta rule as it is explained for the steepest descent algorithm:
w(k+1)=w(k)-nVek (7.1.36)
in which
w,, (kK +1)=w,, (K)+7n5 = x< (7.1.37)
for s=1..N, r=1..N

The recurrent backpropagation algorithm for recurrent neural network is summarized in

the following.

BACKPROPAGATION ALGORITHM FOR
RECURRENT NEURAL NETWORKS

Step 0. Initialize weights: to small random values

Step 1. Apply a sample: apply to the input a sample vector u¥ having desired output
k
vector y

Step 2. Forward Phase:
Let the network relax according to the state transition equation

%xf =—x + F O wxt +uf)
j

to a fixed point X

Step 3. Local Gradients: Compute the local gradient for each unit as:

118

Dr Ogunsola ARTIFICIAL NEURAL NETWORKS CHAPTER 7

koo 17 A Koo koo /4 kooy—1
o =1,)Zgi S
|

where f ,(a:(oo), & *, L* are defined by Egs. (7.1.18), (7.1.8) and (7.1.26)

respectively.

Step 4. Update weights according to the equation
w,, (K +1) = w, (K)+78 £ x

Step 5. Repeat steps 1-4 for k+1, until mean error
e=<e' >=< > a,(yf - %) >

is sufficiently small

7.2 Backward Phase

Notice that, in the com putation of local gradients, it is needed to find out L™, which
requires global inform ation processing. In order to overcom e this lim itation, a local

method to compute gradients is proposed in [Almeida 88,89]. For this purpose an adjoint
dynamical system in cooperation with the origin al recurrent neural network is introduced
(Figure 7.2)

The local gradient given in Eq (7.1.34) can be redefined as
5= f'(@" e (7.2.1)

by introducing a new vector variable V into the system whose r" component defined by

the equation

v = RO e (7.2.2)
|

119

Dr Ogunsola ARTIFICIAL NEURAL NETWORKS CHAPTER 7

u k |:> Recurrent Network lx:>@<y:l

Adjoint Network <,:
k

Figure 7.2. Recurrent neural network and cooperating gradient network

in which * is used instead of o in the right handside to denote the fixed values of the
recurrent network in order to prevent conf usion with the fixed points of the adjoint
network. They have constant values in the derivations related to the fixed-point vk of the

adjoint dynamic system.
The equation (7.2.2) may be written in the matrix form as
vkee((LK*y1)Tgk* (7.2.3)
or equivalently
(LK Tykee=gk™ (7.2.4)
that implies
DLV =g (7.2.5)

]

By using the definition of L j given in Eq. (7.1.26), we obtain,

120

Dr Ogunsola ARTIFICIAL NEURAL NETWORKS CHAPTER 7
k* koo k*
2(5,., - f'@)wyVvi" =& (7.2.6)
J

that is

0=—v"+> '@)WV +& (7.2.7)
j

Such a set of equations may be assumed as a fixed-point solution to the dynamical system

defined by the equation

dd\{[r ==V, + 2 '@)wyv; +. (7.2.8)
j

Therefore V¥ and then &*“in equation (7.2.1) can be obt ained by the relaxation of the
adjoint dynam ical system instead of com puting L. Hence, a backward phase is

introduced to the recurrent backpropagation as summarized in the following:

RECURRENT BACKPROPAGATION ALGORITHM
HAVING BACKWARD PHASE

Step 0. Initialize weights: to small random values

Step 1. Apply a sample: apply to the input a sample vector uk having desired output
vector y

Step 2. Forward Phase:
Let the network to relax according to the state transition equation

d
axik (1) =X+ f(ijix'j‘ +u)
]

to a fixed point xKeo

Step 3. Compute

k* koo koo k
8 =a" =) w;x\" +u;
i

ey Of
f a_.k = — *
([) 8& a:aik

=g =y - X)) i=1.N

&

121

Dr Ogunsola ARTIFICIAL NEURAL NETWORKS CHAPTER 7

Step 4. Backward phase for local gradients :
Compute the local gradient for each unit as:

Sr= @
k
r
equation:

where V- is the fixed point solution of the dynamic system defined by the

d(;’tf =—v, +y fr@wyv;+e.
i

Step 4. Weight update: update weights according to the equation
e (K +1) = Wer (K) + 70X

Step 5. Repeat steps 1-4 for k+1, until the mean error
e=<e' >=< > a;(y{ - %) >

is sufficiently small.

7.3. Stability of Recurrent Backpropagation

Due to difficulty in constructing a Lyapunov function for recurrent backpropagation, a
local stability analysis [Almeida 87] is provided inthe f ollowing. In recurrent
backpropagation, we have two adjoint dyna mic system s defined by Egs. (7.1.1) and
(7.2.8). Let x* and v* be stable attractors of these system s. Now we will introduce sm all
disturbances Ax and AvV at these stable attractors a nd observe the behaviors of the

systems.

First, consider the dynam ic system defined by the Eq. (7.1.1) for the forward phase and
insert X*+AX instead of X, which results in:

d * * *
a(xi +AX) =—(X +AX)+ f(ZWji(Xj +ij)+ui) (7.3.1)
J
satisfying

xi* = f(ZWjiX? +U.) (7.3.2)
J

122

Dr Ogunsola ARTIFICIAL NEURAL NETWORKS CHAPTER 7

If the disturbance AX is small enough, then a function g (.) at X* +AX can be linearized
approximately by using the first two terms of the Taylor expansion of the function around
x*, which is

g(x +AX) = g(x')+ Vg(x)"Ax (7.3.3)

where Vg (x*) is the gradient of g(.) evaluated at x*.

Therefore, f(.) in Eq. (7.3.1) can be approximated as

FO W, (X +Ax) +u;)
i

. . (7.3.4)
= QWX +u)+ > F'O wx] +u)wAX,
i j j

where f'(.) is the derivative of f (.).
Notice that

* *
a, :ijixi +1; (7.3.5)
J

Therefore, insertion of Egs. (7.3.2) and (7.3.5) in equation (7.3.4) results in

f(ZWji(XT+AXj)+Ui)=X;+Zf'(ai*)WjiAXj (7.3.6)
J J

Furthermore, notice that
d =« d
—(X. +AX)=—AX; (7.3.7
O+ A%) =A% (73.7)

Therefore, by inserting equations (7.3.6) and (7.3.7) in equation (7.3.1), it becomes

d_(?tXi =—Ax; +) (@))w;Ax; (7.3.8)
j

123

Dr Ogunsola ARTIFICIAL NEURAL NETWORKS CHAPTER 7

This may be written equivalently as

d AXi
dt

=—> (& — F'(awji)Ax; (7.3.9)
j

Referring to the definition of Ljj given by Eq. (7.1.26), it becomes

d

AX; *
" L=—)" LijAX; (7.3.10)
J

In a similar manner, the dynamic system defined for the backward phase by Eq. (7.2.8) at
V*+Av becomes

d * * 1] * *® *
E(V‘ +AV,) = —(V; +Avi)+zj:f (@)W, (V; +AV)) +¢ (7.3.11)

satisfying

v, = fr@pwy; +¢ (7.3.12)
j

When the disturbance Av in is small enough, then linearization in Eq. (7.3.11) results in

dAv. yk
T:_Z(é‘ji —f (aj)wij)Avj (7.3.13)
J

This can be written shortly

dAVi

it ==Y LAvj (7.3.14)
j

In matrix notation, the equation (7.3.10) may be written as

%Ax:—L"‘Ax (7.3.15)

In addition, the equation (7.3.14) is

124

Dr Ogunsola ARTIFICIAL NEURAL NETWORKS CHAPTER 7

%:—(L*)TAV (7.3.16)

If the m atrix L™ has distinct eigenvalues, then the complete solution f or the system of

homogeneous linear differential equation given by (7.3.15) is in the form

Ax(t)=>y& 671 (7.3.17)
i

where ¢ is the eigenvector corresponding to the eigenvalue A of L* and vj is any real

constant to be determined by the initial condition.

On the other hand, since L™T has the same eigenvalues as L*, the solution (7.3.16) will

be the same as given in Eq. (7.3.17) except the coefficients, that is

AVt =) pic e (7.3.18)
J

If it is true that each 2, has a positive real value th en the convergence of both AX(t) and
Ay(t) to vector 0 are guaranteed.

It should be noticed that, if weight vector w is symmetric, it has real eigenvalues. Since L

can be written as

L = D(1)— D(f'(a,)W (7.3.19)

where D(Cj) represents diagonal matrix having i diagonal entry as Cj, real eigenvalues of
W imply that they are also real for L.

125

