Student Matriculation No:

Name:

EEG 712: Electromagnetic Theory Assignment

May 2011

Dr A Ogunsola

Problem 1

a. For a particular electromagnetic field, the Cartesian component of the electric field vector are given as:

$$E_x = E_y = 0$$
 $E_z = E_0 \cos(\alpha x) \cos(\omega t)$

Given that the magnetic field strength at time t = 0 is $\overline{H} = 0$, show that

$$H_x = H_z = 0$$
 $H_y = H_0 \sin(\alpha x) \sin(\omega t)$

- 1. Determine H_0 in terms of E_0 and the permeability μ of the medium in which the field exists.
- b. The Cartesian (x, y, z) components of the electric vector of a particular wave field propagating in an ideal dielectric medium of permeability μ_0 and permittivity ε are

$$E_x = 0;$$
 $E_y = E_0 \sin(\omega t - \alpha x);$ $E_z = E_0 \cos(\omega t - \alpha x)$

Where E_0 , ω , α are constants.

- 1. What is the state of polarization of this wave field?
- 2. Obtain expressions for the Cartesian component of the magnetic field strength, \overline{H} .
- 3. Show that the Poynting vector for the wave is independent of time and the spatial co-ordinates

Problem 2

a. Let $\rho_v = 5e^{-0.1\rho} (\pi - |\phi|) \frac{1}{z^2 + 10} \mu C/m^3$ in the region $0 \le \rho \le 10, -\pi < \phi < \pi$, all z, and $\rho_v = 0$ elsewhere. Determine the total charge present

Calculate the charge within the region $0 \le \rho \le 4, -\frac{1}{2}\pi < \phi < \frac{1}{2}\pi, -10 < z < 10.$

b. A spherical volume having a $2 \,\mu m$ radius contains a uniform volume charge density of 10^{15} C/m^3 . (a) What total charge is enclosed in the spherical volume? (b) Now assume that a large region contains one of these little spheres at every corner of a cubical grid 3mm on a side, and that there is no charge between the spheres. What is the average volume charge density throughout this large region?

Problem 3

- a. A certain nonmagnetic material has the material constants $\varepsilon_R = 2$ and $\varepsilon''/\varepsilon' = 4 \times 10^{-4}$ at $\omega = 1.5$ Grad/s. Find the distance a uniform plane wave can propagate through the material before: (a) it is attenuated by 1 Np; (b) the power level is reduced by one-half; (c) the phase shift of 360 degs.
- b. Let $\eta = 250 + j30\Omega$ and $jk = 0.2 + j2 \text{ m}^{-1}$ for a uniform plane wave propagating in the a_z direction in a dielectric having some finite conductivity. If $|E_s| = 400 \text{ V/m}$ at z = 0, find: (a) $P_{z,av}$ at z = 0 and z = 60 cm; (b) the average ohmic power dissipation in watts per cubic meter at z = 60 cm

Problem 4

- a. A wireless communication network installed in the PG lecture room is allowed to use a $10\ V/m\,$ radiation at 2.45 GHz.
 - 1. Find the power density in students, who are likely to use the room, if the wave is incident normally,
 - 2. Find the depth over which the field decreases by $\frac{1}{2}$.

Assume that the student's body can be modeled as a semi-infinite plane medium with $\varepsilon_r = 47$ and $\sigma = 2.21$ S/m and that the radiation is in the form of a uniform plane wave.

- 3. How do these results compare if the radiation frequency decreases to 40 MHz ($\varepsilon_r = 97$ and $\sigma = 0.7$ S/m) at this frequency?
- b. The Department decides to establish a wireless network in the PG lecture room using a 5.6 GHz signal. At the same time, the Department decides to re-furnish the furniture in the PG lecture room and these are to made from wooden boards from Iroko wood ($\varepsilon_r = 2.1$).
 - 1. Find the appropriate thickness of the boards that keeps the furniture (assume partitions) from affecting the signal strength. Assume that the network uses uniform plane waves.

Problem 5

a) An infinite filament on the *z* axis carries 20π mA in the a_z direction. Three uniform cylindrical current sheets are also presents: 400 mA/m at $\rho = 1 \text{ cm}$, -250 mA/m at $\rho = 2 \text{ cm}$, and -300 mA/m at $\rho = 3 \text{ cm}$. Calculate H_{ϕ} at $\rho = 0.5$, 1.5, 2.5, and 3.5 cm.

EEG 712 Electromagnetic Theory

An airplane communicates with a submerged submarine using a uniform plane wave of 100 MHz. The wave propagating along the +z (downward) in air is incident normally on the seawater (interface at z=0) with a power density of 20 W/m^2 . Find the electric and magnetic fields in the seawater. If the submarine requires at least $1 \,\mu\text{W/m}^2$ for a reliable communication, find the depth up to which it can be go without losing the signal. Assume $\varepsilon_r = 80$ and $\sigma = 4.5 \text{ S/m}$ for the seawaer