Student Matriculation No:

Name:

EEG 712: Electromagnetic Theory Assignment

May 2011

Dr A Ogunsola

EEG 712 Electromagnetic Theory

Problem 1

a. For a particular electromagnetic field, the Cartesian component of the electric field vector are given as:

$$
E_{x}=E_{y}=0 \quad E_{z}=E_{0} \cos (\alpha x) \cos (\omega t)
$$

Given that the magnetic field strength at time $t=0$ is $\bar{H}=0$, show that

$$
H_{x}=H_{z}=0 \quad H_{y}=H_{0} \sin (\alpha x) \sin (\omega t)
$$

1. Determine H_{0} in terms of E_{0} and the permeability μ of the medium in which the field exists.
b. The Cartesian (x, y, z) components of the electric vector of a particular wave field propagating in an ideal dielectric medium of permeability μ_{0} and permittivity ε are

$$
E_{x}=0 ; \quad E_{y}=E_{0} \sin (\omega t-\alpha x) ; \quad E_{z}=E_{0} \cos (\omega t-\alpha x)
$$

Where E_{0}, ω, α are constants.

1. What is the state of polarization of this wave field?
2. Obtain expressions for the Cartesian component of the magnetic field strength, \bar{H}.
3. Show that the Poynting vector for the wave is independent of time and the spatial co-ordinates

Problem 2

a. Let $\rho_{v}=5 e^{-0.1 \rho}(\pi-|\phi|) \frac{1}{z^{2}+10} \mu \mathrm{C} / \mathrm{m}^{3}$ in the region $0 \leq \rho \leq 10,-\pi<\phi<\pi$, all z, and $\rho_{v}=0$ elsewhere. Determine the total charge present

Calculate the charge within the region
$0 \leq \rho \leq 4,-\frac{1}{2} \pi<\phi<\frac{1}{2} \pi,-10<z<10$.
b. A spherical volume having a 2μ mradius contains a uniform volume charge density of $10^{15} \mathrm{C} / \mathrm{m}^{3}$. (a) What total charge is enclosed in the spherical volume? (b) Now assume that a large region contains one of these little spheres at every corner of a cubical grid 3mm on a side, and that there is no charge between the spheres. What is the average volume charge density throughout this large region?

EEG 712 Electromagnetic Theory

Problem 3

a. A certain nonmagnetic material has the material constants $\varepsilon_{R}^{\prime}=2$ and $\varepsilon^{\prime \prime} / \varepsilon^{\prime}=4 \times 10^{-4}$ at $\omega=1.5 \mathrm{Grad} / \mathrm{s}$. Find the distance a uniform plane wave can propagate through the material before: (a) it is attenuated by 1 Np ; (b) the power level is reduced by one-half; (c) the phase shift of 360 degs.
b. Let $\eta=250+j 30 \Omega$ and $j k=0.2+j 2 \mathrm{~m}^{-1}$ for a uniform plane wave propagating in the a_{z} direction in a dielectric having some finite conductivity. If $\left|E_{s}\right|=400 \mathrm{~V} / \mathrm{m}$ at $z=0$, find: (a) $P_{z, a v}$ at $z=0$ and $z=60 \mathrm{~cm}$; (b) the average ohmic power dissipation in watts per cubic meter at $z=60 \mathrm{~cm}$

Problem 4

a. A wireless communication network installed in the PG lecture room is allowed to use a $10 \mathrm{~V} / \mathrm{m}$ radiation at 2.45 GHz .

1. Find the power density in students, who are likely to use the room, if the wave is incident normally,
2. Find the depth over which the field decreases by $1 / e$.

Assume that the student's body can be modeled as a semi-infinite plane medium with $\varepsilon_{r}=47$ and $\sigma=2.21 \mathrm{~S} / \mathrm{m}$ and that the radiation is in the form of a uniform plane wave.
3. How do these results compare if the radiation frequency decreases to $40 \mathrm{MHz} \quad\left(\varepsilon_{r}=97\right.$ and $\left.\sigma=0.7 \mathrm{~S} / \mathrm{m}\right)$ at this frequency?
b. The Department decides to establish a wireless network in the PG lecture room using a 5.6 GHz signal. At the same time, the Department decides to re-furnish the furniture in the PG lecture room and these are to made from wooden boards from Iroko wood ($\varepsilon_{r}=2.1$).

1. Find the appropriate thickness of the boards that keeps the furniture (assume partitions) from affecting the signal strength. Assume that the network uses uniform plane waves.

Problem 5

a) An infinite filament on the z axis carries $20 \pi \mathrm{~mA}$ in the a_{z} direction. Three uniform cylindrical current sheets are also presents: $400 \mathrm{~mA} / \mathrm{m}$ at $\rho=1 \mathrm{~cm},-250 \mathrm{~mA} / \mathrm{m}$ at $\rho=2 \mathrm{~cm}$, and $-300 \mathrm{~mA} / \mathrm{m}$ at $\rho=3 \mathrm{~cm}$. Calculate H_{ϕ} at $\rho=0.5,1.5,2.5$, and 3.5 cm .

EEG 712 Electromagnetic Theory

An airplane communicates with a submerged submarine using a uniform plane wave of 100 MHz . The wave propagating along the $+z$ (downward) in air is incident normally on the seawater (interface at $z=0$) with a power density of $20 \mathrm{~W} / \mathrm{m}^{2}$. Find the electric and magnetic fields in the seawater. If the submarine requires at least $1 \mu \mathrm{~W} / \mathrm{m}^{2}$ for a reliable communication, find the depth up to which it can be go without losing the signal. Assume $\varepsilon_{r}=80$ and $\sigma=4.5 \mathrm{~S} / \mathrm{m}$ for the seawaer

