Assignment 1: Antenna Fundamentals

Problem 1.1

An aperture antenna is radiating in free space. The dimensions of the aperture are $a=7.112 \mathrm{~mm}$ and $b=3.556 \mathrm{~mm}$.
a) What are the three field regions of this antenna?
b) Determine the boundaries of these regions, as a function of wavelength.

Problem 1.2

Find the far-field distance for an antenna with maximum dimension of 1 m and operating frequency of 900 MHz .

Problem 1.3

If a transmitter produces 50 W of power, express the transmit power in units of
a) dBm ,
b) dBW .

Problem 1.4

The maximum of the radiation pattern of a horn antenna is +20 dB , while maximum of its first side-lobe is -15 dB . What is the difference between the two maxima
a) in dB ,
b) as a ratio of the field intensities.

Problem 1.5

A circular disc is lying in the plane $y_{0}=0.6$, whereas its center lies on the y-axis. The radius of the disc is $r_{d}=0.3$.
a) Calculate the solid angle covered by this disc seen from the origin of the coordinate system.
b) Calculate the solid angle covered by this disc lying in the plane $y_{0}=30$.

Problem 1.6

A hypothetical isotropic antenna is radiating in free space. At a distance of 100 m from the antenna, the total electric field $\left(E_{\theta}\right)$ is measured to be $5 \mathrm{~V} / \mathrm{m}$.
a) Find the power density $W_{\text {rad }}$.
b) Determine the power radiated P_{rad}.

Problem 1.7

The power radiated by a lossless antenna is 10 W . The directional characteristics of the antenna are represented by the radiation intensity of

$$
U=B_{0} \cos ^{3} \theta[\mathrm{~W} / \mathrm{sr}] \quad \text { for } 0 \leq \theta \leq \pi / 2 \text { and } 0 \leq \phi \leq 2 \pi
$$

a) Find the maximum power density $\left[\mathrm{W} / \mathrm{m}^{2}\right]$ at a distance of 1000 m (assume far field distance). Specify the angle where this occurs.
b) Find the directivity of the antenna (dimensionless and in dB).
c) Calculate the half-power beamwidth (HPBW).
d) Find the first-null beamwidth (FNBW).

Problem 1.8

The normalized radiation intensities of three antennas are given by

- $U=\sin \theta \cdot \sin \phi$
- $U=\sin \theta \cdot \sin ^{2} \phi$
- $U=\sin ^{2} \theta \cdot \sin \phi$

The intensity exists only in $0^{\circ} \leq \theta \leq 180^{\circ}, \quad 0^{\circ} \leq \phi \leq 180^{\circ}$ region, and is zero elsewhere.
a) Find the maximum directivities (dimensionless and in dB).
b) Find the azimuthal and elevation plane half-power beamwidth (in degrees).
c) Find the approximate directivities by using Tai \& Pereira's formula.

Problem 1.9

The normalized far-zone field pattern of an antenna is given by

$$
E=\left\{\begin{array}{cc}
\left(\sin \theta \cdot \cos ^{2} \phi\right)^{1 / 2} & 0 \leq \theta \leq \pi, \\
0 & 0 \leq \phi \leq \frac{\pi}{2} \quad \text { and } \quad \frac{3 \pi}{2} \leq \phi \leq 2 \pi \\
\text { elsewhere }
\end{array}\right.
$$

The E-field vector points in θ-direction.
a) Find the directivity using the exact expression.
b) Find HPBW of the E- and H-planes of the antenna.

