EMC Measurements

Test Site Locations

Open Area (Field) Test Site Obstruction Free Trees, vegetation, buildings etc. Chamber or Screened Room

- □ Smaller Equipments
- □ Attenuate external fields (about 100dB)
- External fields could be 10V/m if close to a transmitter.

Open Area Test Site

Major Diameter : 2F

EMC Test Chamber

Courtesy of MIRA

What do we need to measure?

- Start with a Requirement
 Emissions or Susceptibility
- Emission Testing
 - □ Susceptibility structure is basically the same
- Divide into
 - Conducted
 - Radiated

Conducted Emission Tests

- Power Leaks
 - □ R.F.
 - □ Spikes
- Control and Signal Lines
- Metalwork

Radiated Emission Tests

- Magnetic Fields
- Electric Fields
- EM fields

 - □ Far Field

Radiated Emission Measurements

Radiated Emission Measurements

Radiated Emission Probes

- Frequencies from 20Hz to 20GHz
- Wide Variety available
- Low Impedance Probes
 - H-Field Sensor
 - 20Hz 100kHz
 - H-Field Loop
 - 10kHz 30MHz
 - H-Field Sniffer Probe
 - 10kHz 230MHz
 - For finding leakage

Radiated Emission Probes

- High Impedance Probes
- E Field Passive Rod Dipole
 - □ 20MHz 200MHz
 - Approx 1m length
 - Tuned with tunable inductor across 10uF capacitor
 - Output impedance might be too high

Radiated Emission Probes

- High Impedance Probes
- E Field Active Rod Dipole
 - \Box 10kHz 30MHz
 - Includes active matching network
 - Gives low output impedance (50Ω) to match receiver
- E Field Capacitive Sniffer Probe 10kHz – 1GHz

Radiated Emissions

- Sniffer probes are uncalibrated
- Antenna output fed via transmission line to receiver
 - □ Superheterodyne receiver
 - Lower cost for production line testing
 - □ Spectrum analyser
 - More expensive

Radiated Emissions

Wave impedance for near field Electric Field measurement is very high Impedance matching is hard □ Sensitivity may suffer Receiver measures in V. Conversion to Tesla is required □ Normally within test equipment

Radiated Emission Measurements

- Probe converts <u>E</u> or <u>H</u> fields to Volts for the receiver
- Use Antenna Factor to evaluate this

$$AF = \frac{E}{V} = \frac{Measured}{Antenna} \frac{Field}{Voltage} = \frac{1}{l_{em}} m^{-1}$$

• Or

$$AF(dBm^{-1}) = E(dB\mu Vm^{-1}) - V(dB\mu V)$$

Antenna Factor

- Figure of merit
- Low AF implies high sensitivity

Passive Rod Dipole	
Tuneable Dipole	AF = -2 – -14dB at
	30 - 200MHz

EMC Chamber Measurement

Radiated Immunity

Basic requirement include
 RF signal source
 Broadband power amplifier
 Transducer (antenna)
 Test Chamber

$$E = \frac{\sqrt{30 \ ERP}}{r} = \frac{\sqrt{30 \ PG}}{r} = k \ \frac{\sqrt{P}}{r}$$

Ŋ9

Ŋ9

Meter Accuracy

- Calibration
- 🗆 Drift
- Faults
- Cable
 - Length
 - Unbalanced currents reduce interference immunity
 - Impedance match at each end

Antenna

- □ Large and averages field strength
- Poor screening can give electrical image through screen
 - Mutual coupling to this may change calibration
- Radiation Field
 - Inaccurate distance measurement
 - Unknown field pattern

EMC Chamber Measurement

Equipment under Test
 Accuracy of placement
 Height above ground
 Placing of cables

- Chamber
- Poor screening

External fields affect antenna and EUT

Conducted Interference Range of probes and techniques are used.

Conducted Interference Probes

COUPLING DEVICE		DEVK	CE FREQUENC	YCOVERA	GE		
SPIRAL WINDING (BOX) SPIRAL WINDING (CABLE) 10 uF CAPACITOR		(Power line freque (Power frequ.)	ncies)		(Spike injectior (Spikes)	1)	
LISNs AUDIO TRANSFORMERS TORROIDAL CURRENT PROBES							
INDUCTIVE CLAMP CAPACITIVE CLAMP DIRECT CAPACITOR INJECTION ESD PROBE HIGH IMPEDANCE VOLTAGE							
PROBE			- · · · · · · · · · · · · · · · · · · ·			-	
1() 100	1k 10k	100k FREQUENCY Hz	1M	10M	100M	10

Conducted Interference

- EMI Current Probes
 - Clamp round a conductor
 - □ Magnetic loop
 - □ High Permeability
 - □ High turns count
 - □ Saturation of core a problem

Conducted Interference

Line Impedance Stabilisation Networks
 Mains Isolation Network
 Vee Network
 Connection between

 Line – Earth
 Neutral - Earth

 Various versions exist depending on

Various versions exist depending on standards used

LISN

Functions

- □ Pass AC or DC power to Test sample
- □ Block EM noise going into power system
- □ Blocks power borne EMI entering test system
- □ Stabilises supply source impedance

LISN Circuit

• •		•••	•	• •	:	• •	:			•	•	:		•	:			:	• •		•			•	:		•	•			• •		:	
• •				• •	•	• •	•			•	•	•	• •		•	• •		•	• •		•		• •	•	•	• •		•	• •		• •	• •	•	
To	Fest	\$a	im	ple	•	· ·	•			•	•	•	· ·	•					•••		•	•			•	· ·	•	•	. T	O	AC	S	up	ply
· ·	· · ·			•••	•) 01) 0.1	u	· ·	•	- e	50ul	H		· ·	•	•	1 0	22		Iù	 	•	•	· ·			· ·	•	•
Coa	x to I	Rec	eiv	er	(5() 0	hn	n)	:	- - -	•	•	· ·	•	•	• •		•	• •	•	•	1	• •		•	•••	•	•	• •		• •	· ·		•
• •	· · ·		•	•••	•	• •	•	R1		1k	•	•	· ·	•	•	• •		•	•••	•	•	•	• •	•	•	· ·	•	•	• •			· ·	•	•
• •	· · · ·		•	· ·	•	· ·	•			•	•	•	· ·		•			•	•••		•			•	•	· ·	•	•	· ·			· ·	•	
• •				· ·	•						•	Ea	art	he	d	Ca	ISE						· ·			· ·		•					•	•
			•	•••	•	· ·	•		 	•	•		• •	•	•				• •	•	•	•		•		• •	•	•	• •				•	•

LISN

- In 3-phase systems three LISNs are used.
- Receiver switched between them for measurements
- L1 and C2 provide a Lowpass filter to remove RF from the power line

Use of LISN

Use of LISN

EUT earthed through normal means \Box 3 core cable via supply 2 core double insulated mains lead used if EUT is not insulated through supply lead Supported by non conducting table 0.4m above ground plan \Box 0.8m from any other conducting surface

Measurement Receivers

Spectrum analysers □ Higher cost □ Narrow band swept measurement Shows full spectral content □ Very accurate Superheterodyne receivers □ Routine testing □ Lower cost

Measures narrow or broadband interference

Measurement Types

- True Peak
- Quasi Peak
- Average
- RMS
- See Williams, p86

Last two types are obvious

True Peak and Quasi-Peak

- True peak will register the maximum value of a repetitive waveform
 - Also called Envelope Detector as follows the envelope of a single frequency.
- Quasi-Peak
 - Weighted to take account of human response to repetitive pulse interference.
 - Low repetition rates less annoying than high repetition rates

Quasi-Peak Detector

Charge Time Constant – 1ms Discharge Time Constant – 160ms

Approximate Response

Simulated Response

- A measurement system measures 4dBµV at a receiver.
- The measurement antenna is a dipole connected to the receiver by a coaxial cable
- Assume that the cable is perfectly matched to the antenna and receiver
- What information do you need to calculate the measured Electric Field at the antenna?

- What does it look like?
- Receiver
- Coaxial Cable
- Antenna
 Want <u>E</u>
 Need V_t

- What do we need?
 Cable

 Loss
 Length
 Loss per metre

 Takes us back to antenna terminals

 Antenna
 - Antenna Factor
- Takes us to the Electric Field

Some Numbers

Cable Length = 2.5 m
Cable Loss = 0.5 dB/m
Antenna Factor = 6dB/m

Now calculate the Electric Field

- Total Loss = Length x loss per metre This gives 1.25 dB
- Voltage at Antenna Terminals
 - □4dBµV + Total Loss
 - This gives 5.25 dBµV
- Electric Field is Terminal Voltage + AF
 - □ This gives 11.25 dBµV/m

Final Comments

- EMC measurements are difficult to do well
 There are many techniques for

 injecting signals
 - sampling signals
- An understanding of the underlying theory will help make good measurements