Electromagnetic Theory Page 1 Lecture 1

DIV, GRAD, CURL AND ALL THAT.........

Scalar Functions  e.g. Temperature T (X, Y, 2)

Function of (X, y, 2)

Vector Functions:

F(x,y,z)=iF(xy,2)+jF, (xy.2)+k F,(x,y,2)
F, F, and F, are scalar functions
Specifies magnitude and direction e.g. Velocity of a fluid

Coulombs Law Fo 1 G0,
(in vacuum) Are, [z
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:- Acts along line joining g; and q»

d: and g

Principles of superposition

If F, is the force exerted on qo by q; when there are no other charges nearby, and F; is the force
exerted on go by g, when there are no other charges nearby, then the principle of superposition states
that the net force exerted on ¢, by gl and g, when they are both present is the vector sum F; + F,,

e All forces are vectorally.

o Force between two charged particles is not modified by the presence of other charges.

Electric field at r due to the charge q;

For a group of charges
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Forceonqgpat r =ix + jy + kz

due to charges Q, at I,

Electrostatic

due to charges @, at I,

SURFACE INTEGRALS AND THE DIVERGENCE.

Surface S
e

g
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=)}

Ade Ogunsola
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Gauss’ Law

gSSE-ﬁas=gio

Unit vector normal to the surface.

field
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SURFACE INTEGRAL

F(X, yl Z) _n n
LF(X, y,z)+n(x,y,z)ds="Flux of F
n(x,y,z)
Can be For closed surface
open or points outward from
closed surface the volume enclosed

by the surface

T~ Parts of surface area

0S

Mass flow

Rate of flow = pVv « NAS
through AS

A—
I
I Total flux = IS PV eNds
AS
p . Density V :Velocity of mass flow.

THE DIVERGENCE

Lim
AV -0 1
about AV

(xy.2)

divF=V.F= gﬁSF.ﬁas

Scalar quantity which is a
function of position (x, y, z)

Ade Ogunsola
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Consider a little box

F=Fi+Fj+Fk

Az
N| < el h
\ Fx+A>< = Fx + 6FX AX
\\\ \ SZ aX
X X+ AX
Sy
'[ Fenos Y {FX+@AX— Fx} AZAY
S,+S, OX
oF

=—2AXAZAY = iAV
OX OX

Do the same for the other faces

1 N oF oF, OF
=>—@¢ Fenos=—*+ +—
AV s ox oy oz
oF
v.F:an+ y+an
oXx oy oz
V:ii+j£+ki
ox “oy 0z

DIVERGENCE THEOREM

¢ Fefics=| veFov

Lecture 1

The flux of a vector function through a closed surface equals the (triple) integral of the divergence of

that function over the volume enclosed by the surface.

F must be continuous, differentiable and its first derivatives are continuous in V and on S.

Ade Ogunsola
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LINE INTEGRALS INVOLVING VECTOR FUNCTIONS

F(x,y,z
by 2 Work done by force in

moving a particle along

N p b the curve from Iy to I,

w=] F(xyz)-tal

y h—l,

~ LOX . ~ . . .
t(I) =|—+ jﬂ +k— t unit vector tangential to curve at point P

(only the component that acts along path does work)

o= _Fox+F,dy+Fa

The value of a line integral can (and usually does) depend on the path of integration.

Path independence of work done by Coulomb Force.

z A
Coulomb Force on q
q
r — 1 q_cio 0
ey 1
’ y g _ixtiyrke
/ I '
X
Fot q, (W) tol = iox + joy + koz
4re, r
[ F-tor="To XOK + YOy + 207
¢ 47[80 n r

l r2

r=x2++y? +7° _qq, jrzq
ror = Xox + yoy + 20z 4re,

Ade Ogunsola
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e % (1 1
dreg\ 1, T,

Haven’t had to specify C! Get same answer whatever path.

Have considered only one charge. If there are many qo, q1, Q2...

F=FR+FR+F+..+F

| Fetal=] Ryt + | Fetol 4.+ R -0

(Principle of superposition)

gn then total force on g

Coulomb force depends only on distance between two particles and acts along the line

joining them <« Central force.

For any central force _[C Fotol is path independent

P,

= pF-tol =0
Since. =~ F=qE = J'c E.tol is path independent

And gSCE-Eal -0

Conservative field

Ade Ogunsola
University of Lagos, 2008

[_Fetal=[ Fetol=-[ F-fa
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CurlF=VxF
oF oF

VxFoi oF, oJry +j(8FX—6FZj+k y  OF,

oy oz 0z  0OX oXx oy

i kK

|2 2 2

oX oy oz

FF F, F
Stokes Theorem (F could be any vector field)

gSCF-Ealzjsﬁ-vXFas

The line integral of the tangential component of a vector function over some closed path equals the
surface integral of the normal component of the curl of that function integrated over any capping
surface of the path.

F Must be continuous and be differentiable and have continuous derivatives on C and S.

The meaning of curl

Think of water draining from a bathtub — not quite going to do this but — consider a small volume

X =T coswt
of water at (x, y) where

Yy y=rsinwt

V (X, y)=i%+j%:a)[—yi+xi]

T

velocity field V xV =2wk

Consider Electrostatic field

<_;SCE-E3|=0=Lﬁ-Vans

= VxE=0 for an electrostatic field

Note: if VxE=#0 E cannot be an electrostatic field

Ade Ogunsola
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The gradient

Suppose F(x,y,z)=Fi+Fj+Fk

—>
. B .
OX Yooy 0z

Where é(x,y,z) isascalar

F.i_00 X 090y, 09 02_09
xa oyad ozal o

ox oy a
a ol

ICF . tol :Jc%al =d(X, ¥,2)— (X, 0. Z)

If F and ¢ are related as Depends on position of

is independent of path.

.0 .0 0
F=V¢:|:I&+15+k§}¢

Ade Ogunsola
University of Lagos, 2008

above then the line integral start and finish not path
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ELECTROSTATICS IN A VACUUM

COULOMBS LAW

F= :

Az, 1 DUE TOq,

90

ELECTRIC FIELD STRENGTH

FIELD AT
E =E |:Vm_l:| |: q1:|
A DUE TO g,

E lines starton +ve charge

end on —Vve charge

Electrostatic field E is conservative

C_[)l E«dl=0 No work done around a closed path

1 4 {FORCE AT ql} ,

[ dl =1 ]

Stokes theorem ) E+dl = [ V xE +dS [dS = dS]

BN
Surface bounded
by path

=VxE=0 =E= Ensures that lines of E start

w on +ve charge

V = Electric scalar potential [V m™]

VV—la—VJrj(3 ka—V
ox oy oz

Ade Ogunsola
University of Lagos, 2008
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ABSOLUTE POTENTIAL

A
V,= —j E-dl  External work done per unit (+ve) charge to move unit test charge from
infinity to the point 4.

POTENTIAL DIFFERENCE

B
Ve, =V, =V, = —L E «dl Work done per unit chare in moving unit test charge from 4 —B.

CHARGE DISTRIBUTION

E 0 T
a) Point charge Q = 2
Are, 7
Field at point
P(x.y,2)
V=—| Eedr= Q9
Q
Source (X', y', Z")
r=i(x—x)+j(y—y)+k(z-2)
~ r
r=—

~

re(x=xY +(y=y) +(z=2)

b)  Volume charge distribution [ pCm*|

Field at point P

1 ¢ rpdv
(0.2 E = L = [ pdv
1 oe
av OR
1 pav
pxiyiz’ 472'(90 IV 7 Q p
Volume v

Ade Ogunsola
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c)  Surface charge distribution [ o Cm? |

ds

Field at point P
(xy.2)

1 ¢ fodS
Charge density E= Are, L 2 Q= J.S odS
('’ 2') [abr. o]
OR
y=—_[ 2% 4o-ods
Are, *S r

Surface S

Gauss’s law: Laplace’s and Poisson’s equations in vacuum

Have seen E =

[in vacuum]

Choose a simple e
surface

dS =t r’sinf8dédg

(JSSE-dS :I;jo J':: O r*sinfdld¢ (f-f)

0 A, r

§.EvdS =2mx2x O

4rs,

_o_1
CJBSE-dS—go o jvpdv

Ade Ogunsola
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1
Gauss’ Theorem SBS E.dS= LV cEdv= —I pdv
&y Y
VeE="— Differential form of Gauss’ Law in vacuum

VeE=£ but E=-VV =V.E=V+(-VV)=-V¥

80
2, P
= VYV =-= Poisson’s equation
&y
2
it p=0 V&V =0 Laplace’s equation
1 dv
One solutionis V = I P
Are, v 1

But to this we must add all possible solutions of homogeneous equations that are consistent with
the boundary conditions (symmetry) of the problem.

Ade Ogunsola
University of Lagos, 2008



Electromagnetic Theory Page 1 Lecture 2b

EXAMPLE EXAM STYLE QUESTION

A perfectly conducting sphere is placed in a previously uniform electric field pointing in the z- direction.
The sphere is uncharged and has a radius a.

i)  How is the electric field changed?
ii)  What is the surface density on the sphere?

iii)  What is the induced dipole moment of the sphere? (Would not get this last bit in exam!)

THINK ABOUT THE SYMMETRY OF THE PROBLEM!

Sphere = We should work in spherical polar coordinates.

~o0V ~10V . 1 oV
r +Q - —_—
or r oo rsin@ o¢

Z, R We are told that E = E, Z in Cartesian
/ r coordinates
_ or -
rsin 8oy gy
% A How to write this in Spherical Polar
//l i ’)
e \6 Coordinates?
09" 10
0 o/
T : g =y
7 = Y
“ap L :
¢\\\ i ....... J/ EOZ
X A T
/0
E(r,0,¢4)=(E,cos0)f - (E,sin6)0 g /= (EocosO)r
..
Now since E=-VV /

o
m
o
[Z3
5

N
>

o>

=V (r,0,¢)=—E,rcosd

Ade Ogunsola
University of Lagos, 2008



Electromagnetic Theory Page 2 Lecture 2b

Now we put sphere into field = field is perturbed
Potential must be a solution of V3 =0

Acosé

Try V =—E,rcosé >
r

with origin at centre of sphere.
N.B. All terms must have same & dependence to match at boundary.
When r — oo must get back to uniform E i.e. %2 -0

In spherical polar coordinates

S L e
reor or resiné oé 00 resin“é og¢

is a solution of V& =0

Check and find V (r,6,¢) = — E,r cos + Acoso

l.2

N.B. : Charge on a conductor resides on its surface
. Every point on or in a perfect conductor has the same potential.

:If V=constant E = -VV =0 i.e. within conductor E=0

Initially sphere uncharged = V = 0, no net charge on conductor when moved into field =

For r—>ow  V(r,0,¢4)—>—Eyrcosd

For r<a V(r,6,4)=0 @
. Boundary condition

UseBC (1)atr=a V=0 = A=Eza°

BC 2)r > o V — —-E,rcosé

E 3
Forr>a  V(r,0,¢)=—Eyrcosd+ ﬁ? cosé @

R 3 - X
E=-VV =(E,cos8)r - (E,sin 6)9+(2anr%39}f {anrflné’Je

Ade Ogunsola
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As r—a E < (3E 0\; Lim
(From r>a) =(3E, cosO)F r—a
Gauss’ Law
S 80
dS =r’sin@dédg¢
odS
IS(3E0 cosd)ds :Lg—o

= o =3E,¢g,c0s60

Induced Dipole Moment p = 47[508_3 EO (see next section for why!)

Ade Ogunsola
University of Lagos, 2008
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POINT DIPOLE
. . cosé
Potential from a dipole: V, = P >
Areyr
+Q A
Where |p|=p=QJdz
.. Second term in equation corresponds to
Sz the contribution of a dipole with:
p = 4re,a’E,

ozkr
D V. = Q Q
P Ame, e,
V. = Q (rz_rl)
" dmg, o,
v - Q07 (2r,cos0' - 62)
r P Are, L, (rl + rz)
T r2 Now as r>oz
& | 0'—6 n,r,—>r
\ % V- Q oJzcosd
2 _ 2 , P A, r
I’ =r, +(8z)—-26zr,cos6
, 1 |p|cosé
C Lt (62)" —26zr,cos ¢’ Vp:4ﬂg )
— = 0
P (n+r,) _
1 (per 1
V = = — ’V
P 47&90( ré j drg, P (%)

E=-VV in spherical polar coordinates E=rE, + 0 E, +QE,

oV _2pcosd E _ 10V psing E 1 ﬂ_o

“or dxs,r® T ro0 st *7 rsing o

MAde Ogunsola
University of Lagos, 2008
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THE ELECTROSTATIC PROPERTIES OF DIELECTRIC MATERIALS

IDEAL DIELECTRIC - contains no free charge (perfect insulator)
In practice all material media contain some free charges and therefore have
finite conductivity.

DIELECTRIC = very low electrical conductivity

CLASS 1 DIELECTRIC
Non-Polar media composed of neutral atoms/molecules that have no electric

dipole moment in the absence of an applied field.

When an E field is applied the electronic orbitals are perturbed. Negative
electrons are displaced in a direction opposite to that of the field and positive
nuclei tend to move in the same direction as E. = centre of negative charge

displaced from centre of positive charge.

Electron Nucleus
‘clond’ .
f +@& >'Pa!m‘sau'on
Pl 7 charges'
Egquivalent
: . Induced Dipole
No Applied Field (E=0) With Applied Field E Moment p

Figure 2.1: Effect of an Electric Field on a Neutral Atom (Class I)

Examples:

Relative Permittivity Conductivity
He & =1.000071 <10 Q'm™
CH, & =1.00098 <10 O'm*
Teflon & =2.0 <10 O'm*

Ade Ogunsola
University of Lagos, 2008
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CLASS Il DIELECTRIC

Polar dielectric composed of molecules or ion pair that have a permanent

electric dipole moment.

Examples: H,O e~ 80 @ low frequency and T>273K
KCI g ~5.0 @ low frequency and T=273K
NH; g~ 1.008 @ T=273K and 10° Pa

Consider a gas of polar molecules with each molecule having a Dipole Moment
Pm. In the absence of an electric field the directions of these dipoles are
randomised by thermal energy. When E applied dipoles tend to align parallel to
E. The Tendency to align is disturbed by thermal motion. Since kgT >> p.,.E
(bm.E — electrostatic energy of a dipole). The net moment of a volume of gas is

much smaller than it would be if all dipoles were aligned.

When E applied to a Polar Gas also get induced (type 1) dipole moments.

The Electric Field “seen” by each dipole is a combination of the applied field

and that due to the other dipoles.

b Pm Di

|
<
<

Note get induced dipole even in the absence of applied field. Electrons around

one ion see field from charge on other ion.

Ade Ogunsola
University of Lagos, 2008
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SOLIDS AND LIQUIDS

TYPE 1 DIELECTRIC - Simple approach works OK

TYPE 2 DIELECTRIC — Complicated

E.G. H,O g ~ 80 for water at T > 273K
H,O & ~3 for ice

In ice permanent dipoles cannot re-orientate!

In ionic solids small displacement of positive and negative ions caused by E

gives rise to large electric polarisation and ¢, — see solid-state physics...

DIELECTRIC BREAKDOWN

In E field the few free electric charges in a dielectric are accelerated — if the

field large enough then when these electrons collide with atoms (or ions) they

produce secondary electrons that are themselves accelerated by E.

— AVALANCHE EFFECT - currents flows (in streamers) Dielectric is heated

and can be permanently damaged.

Field required for this effect - BREAKDOWN FIELD - typically 10° Vm™

If dielectric thin (say in a commercial capacitor) a few volts can cause

breakdown.

Ade Ogunsola
University of Lagos, 2008
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DIELECTRIC POLARISATION (P) AND ELECTRIC SUSCEPTIBILITY (y).

For both Class 1 and Class 2 Dielectrics, applied electric field INDUCES an
electric dipole moment in each elementary volume of the material. Induced
Dipole moment originates from POLARISATION CHARGES - bound to the

nuclei and not able to move as free charges.

Macroscopic measure of the induced-dipole effect is the ELECTRICAL
POLARISATION P.

P = Induced electric dipole moment / unit volume [ Cm™]

Usually we write P = g5 v E

Not always the whole truth! Assumes that P depends linearly on E.
x homogeneous

P parallel to E.

P IS RELATED TO SURFACE AND BULK POLARISATION CHARGE

When a dielectric acquires an Electric Polarisation P (by virtue of an internal
field E).

(@) A distribution of polarisation charges appears on the surface —surface

polarisation charge density ap:E-ﬁ [Cm?]. A is outwardly

directed unit vector normal to the surface.

Ade Ogunsola
University of Lagos, 2008
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(b) A distribution of polarisation charges appears throughout its volume —

volume polarisation charge density pPp=-V «P[Cm?].

(@)  Surface distribution

(i) E applied at angle @ to normal to surface A
~.Patangle 8 to n

(i) Assume polarisation charge + AQp on the top

AS and —AQp on the bottom AS.

-.Dipole moment for our volume element = AIAQp = PAv = PAIAS cos @

AQ _

S Pcos@=Pen= Op
AS

A~

= O-P :B.D
(b) Volume distribution
Consider a small-uncharged volume Av, and electric field is applied and the

material becomes polarised.

Total polarisation charge on surface =§S o pdS = i.)s PeAdS = §SB- ds

As Av was initially uncharged

1

Ade Ogunsola
University of Lagos, 2008
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ELECTRIC DISPLACEMENT D

In free space Ve E = p; Where p; isthe free charge density.

If a field E exists in a material medium, the material becomes polarised and

polarisation charges are induced with a charge density pp .

Now must modify our equation by including ppso that Vego E = p; + pp (We
note that E can begin and end on free and bound charges).

Using pp =-VeP = Vo(gOE+E):pf

We define D=gpE+P = VeD = p;

D= ELECTRICAL DISPLACEMENT [Cm'Z]

LINES OF D CAN ONLY BEGIN AND END ON FREE CHARGES

D =¢yE +P and P =gy E (for linear, homogeneous and isotropic media)
= D :go(1+ ;()E =gpe E=¢E

& =(1+ y)= RELATIVE PERMITTIVITY [Dimensionless]

&= ABSOLUTE PERMITTIVITY [Fm™]

GENERAL FORM OF GAUSS’ LAW

VegoE =ps +pp IVVogong:§SgO§od§:.fV(pf +ppbv
VeD = pq [,VeDdv=§ DedS=| psdv
GENERAL STATEMENT OF GAUSS’ LAW §SQ.d§ = jvpfdv

WE STILL HAVE E =-VV BUT POISSON’S EQUATION BECOMES

(Pf +PP)
€0

VA =—

Ade Ogunsola
University of Lagos, 2008
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FIELDS NEAR A CHARGED CONDUCTOR

Lines of Dand E are normal to the surface close to the surface (we have seen
this before and will see it again with boundary conditions).

Gauss’s Law gSSQ.dgzLafds since all free charge on surface.

o)
Just above surface D,AS =o;ASand D,, =o;and E, = i
€0

E, =0 in conductor since potential everywhere in conductor is the same —

uniform potential.

EXAMPLES CONCERNING POLARISATION CHARGES

(a) Relation between pp and p; for a simple linear, homogeneous medium =

&, =constant

D=¢gE+P and D=¢gys E

-p- 0 p-p/ &
S0y &y

o

-1 .
:>V-E=(gr ]V-Q and since VeD = p;and pp =-V P then
&y

-1 :
pp——(grg pr. So if p; =0 then pp =0 = only a surface charge
;

distribution o exists on polarised medium.

Ade Ogunsola
UNiversity of Lagos, 2008
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EFFECTIVE CHARGE DENSITY

- : -1
VegyE = p; + pp so in linear homogeneous medium pp =—(8rg pr then
r

VegyE = p—f. a8 Is called the effective charge density.

Er Er
~.If a point charge Q is placed in an dielectric medium the effective charge is

Q

— which is less than Q since &, >1. Physical Reason: On the surface of the
Er

dielectric adjacent to the point charge Q there is a surface distribution of

polarisation charge of the opposite sign to Q — reducing the effective charge

(see the problem sheet).

Ade Ogunsola
University of Lagos, 2008
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BOUNDARY CONDITIONS IN ELECTROSTATICS

©  THE NORMAL COMPONENT OF D IS CONTINUOUS ACROSS

A BOUNDARY PROVIDED THAT NO FREE CHARGE IS
PRESENT ON THE BOUNDARY.

©  THE TANGENTIAL COMPONENT OF E IS CONTINUOUS
ACROSS A BOUNDARY.

OOOOOOOOOOOOOLOOOOOLOOOLOOOOLOOOOOLOYO
ANY SOLUTION TO AN ELECTROSTATICS PROBLEM MUST
SATISFY THE BOUNDARY CONDITIONS.
OOOOOOOOOOOOOOOOOLOOLVOLLOLOOOLOOOOO

THE NORMAL COMPONENT OF D

Assume that the free surface charge
density is o [Cm™] on the interface

between region 1 (&;) and region 2 (&, ).

In region 1 the electric displacement
(D;) make an angle of & with the

normal to the interface, and in region 2

N D> D, makes an angle of 6, with the

Regian 1 — normal to the interface. Therefore the
en AX magnitudes of the components of
Region 2 D normal to the interface are

o Dy, = Dy cosé; and D,, = D, cos6,.

If we apply Gauss’s Law to the little “pill box and let the width of the box
AX — 0 then

J;D+dS = [;o¢dS

D,,AS — Dy, AS =0 AS
Dy, = Dyy
and because D = ¢y¢, E then there is a “jump” in the normal component of

the electric field at the boundary.
£2Eon = 1By

~. Dy,

Ade Ogunsola
University of Lagos, 2008



Electromagnetic Theory Page 2 Lecture 4

THE TANGENTIAL COMPONENT OF E

In region 1 the electric field (E;)
makes an angle of ¢, with the normal
to the interface, and in region 2 E,
ek TAI makes an angle of 4, with the normal

to the interface. Therefore the
v = magnitudes of the components of
E tangential to the interface are

Region 1 Region 2
€n €r2

The line integral of E around any
closed path in an electrostatic field is zero jﬂl E«dl=0
Soas Ax—0 § E.dl=E,Al-E Al =0
.. Ezt - Elt
(The tangential component of E is continuous across a boundary)
Because D = ¢y E
Dot _ Dy
& &

Note E =0 in a perfect conductor = E; =0 on surface and the only non-
zero component is normal to the surface.

REFRACTION OF LINES OF D AND E .

Boundary conditions:

Ey =E, or E;sing, =E,siné,
and

D,,, = Dy, 0r D;cosé&, = D, coso,

D D , :
So E—lcot 0, = E—Zcot 0, and since D = gye, E we find that
1 2

g cotl, =¢,coto, : Refraction formula for field lines.

Ade Ogunsola
University of Lagos, 2008
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DIELECTRIC SPHERE IN A UNIFORM FIELD.

Sphere = work in spherical polar

€2 coordinates (r,8,¢4), but remember
that there will be no variation with
respect to ¢.

Eok

Boundary Conditions:

Normal component of D is continuous: D, = D;, = &,E,, = §Ey,
(D, :is the radial component of D)

Tangential component of E is continuous: E,, = E;
(Ep : is the component of E tangential to the surface of the sphere)

, B
Try the potentials V, = —Eorcos¢9+Azcos¢9 and V; = B;rcosé@ +—220039
r r

Butas r — 0 inregion 1 V; — co which means that B, =0

So V;=Bjrcoséd

and V, = —E0r0039+ﬁ2c039
r

Also V must be continuous at the boundary (any discontinuity = infinite
electric field!)

“—EgR +i2= BR or B =-F +A3
R R

Normal components of E at interface are

Ade Ogunsola
University of Lagos, 2008
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Elr:—{%} =—B, cosd E2r={%} =Eoc039+2—§cose
or r=R or r=R R

We know &,E,, = &E;, so

2&,A

3 o R3
S —‘Z—ﬂEM%} EO+R—A3
S0 A:%Rﬁzo and Blzﬁa)
V, = % Eorcosd and V, = —{1— (¢(9j1+_2€;2)) F:; ]Eor cosé
Hence at r =R

Consider Dielectric sphere in vacuum &, = g5 and ¢; = gy,

o B (gr +2)
but P =g,(s, —1)Ek
= 350(5r —l)E "
(gr +2) o=
E,= Eo__%

Ade Ogunsola
University of Lagos, 2008
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DIELECTRIC SPHERE

e e — .

il R St — e s el e AR

PR S i BT b

— 8y & ~iy (=
e i T b e e e

s A - i [ P el P Sl O o T _,--"’J,d-._‘-““‘"""‘--\_._

P R e LR T L g S P T T AL AL I il

{a) &, = & (B) ey =6

Lines of electric displacement D due to a dielectric sphere of relative
permittivity ¢ in a uniform electric field in a medium of relative permittivity

&

CONDUCTING SPHERE

Lines of Electric Field near a conducting sphere in a uniform electric field.

See http://www.electrostatics3d.com/
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CAPACITANCE

To calculate the capacitance of any given arrangement we must calculate the
P.D. between the conductors for an assumed charge.

METHOD
1. Assume charge =Q on either conductor
2. Use GAUSS’ LAW to find D in the space between the conductors.
3.  Calculate E at each point in space using D = gy¢, E.
4, Find the P.D. between the conductors from V = —L E «dl along any
path joining the conductors.
5. c=%.

EXAMPLE 1. A PARALLEL PLATE CAPACITOR.

z=d e
E:
v —Op
E: P D
A 4
+Gp
E: D
y v —O v \ 4 v v \ 4 \ 4 \ 4 v v
z=0

A P.D. is applied and a charge appears on each plate Q =+0A (o = surface free

charge density, A= area of plates).
Note there are three regions 1 and 3 are gaps between plates and dielectric
where &, ~1 and region 2 in the dielectric ¢, is a function of position. But by

integrating over one of the metal plates and using Gauss’ Law we find that

Js Q-dgzjs odS and hence D =-o?2

Ade Ogunsola
University of Lagos, 2008



Electromagnetic Theory Page 2 Lecture 5

Normal component of D is continuous at each boundary .. D has the same

value in all regions. Note we are ignoring the Fringing Fields i.e. assuming that
linear dimensions of the plates are large compared with their separation.

D O .
::__Z

Inregionsland 3 ¢, =1s0 E=
o o

Inregion2 E=——=-—-1
E8, &,
V=-|E dI:—IZ:dE A
Now R L)
VA
So . Z_ZOV and Q= ng
J“ dz J“ d
7=0 ‘9r(z) 7=0 gr(z)
Since C—(y we see that C = FoA
VA T ez=d
dz
z=0 €r(Z)

Now if the dielectric is homogeneous, and fills the space between the plates
(totally) = &, = constant and

A
ngrgo—

d

Remember that D =gy E + P and D = gy¢, E so we could calculate

P
_ P
-

pp =—V P (=0 for homogeneous dielectric)

1>

O-P :E.

Ade Ogunsola
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Example 2. The cylindrical capacitor (cylindrical symmetry).

+Q® b Space between metal cylinders is filled with
Qv 1 an ideal dielectric material with relative
permittivity &, .

Construct an imaginary cylinder between the
two metal coaxial cylinders and use Gauss’
v Law.

quD-dS:DrXZEFdzgSSGdS:Q so D=D,r= Q r fora<r<b

2zrd
e P __Q ;
&, 2me,e,rd
r=b . r=b1 . . b
V=— E-rdr:LJ' —r-rdr:—Lln —
r=a 2rg,e,d dr=a r 2rg,e,d \a

2rrdege,
8
In| —
a

INTERNAL ENERGY OF A CHARGED CAPACITOR.

Since C = % we see that C =

When a capacitor is charged the source of P.D. does work to separate the
charges Q on the two conductors. This external work done by the source may be
considered to reside in the field of the capacitor as potential energy.

Consider a capacitor being charged, at time t the charge on the capacitor is g.
Work done by the source to increase q— q+dq requires work to be done

dW =Vdq. Since q=CV then dwW :qcﬂ so that the W.D. to increase charge

from0—->Q is

9=Q 2 2
wp-| a_0Q° _QV_CV
w0 C 2€ 2 2

Ade Ogunsola
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ENERGY DENSITY OF AN ELECTROSTATIC FIELD

Construct an imaginary surface by

v

A A - placing conducting plates of area AS
AS{ \ { \ : E on the equipotential  surfaces
\ u / ST separated by Ax. (As a conductor is
> an equipotential surface the presence
X > of such plates would not disturb the
«—> field in any way).
V+A4V Vv
AC = ErE0AS
AX
2
AW:EACMszlﬂﬁEEMVf:EQ%MM4EMJ
2 2 AX 2 AX

Ez—z—vx so as Ax — 0 we see that AW :%grgoASAx E?
X

ASAX= Av =Volume occupied by the field in the virtual capacitor.

.. Energy Density per unit volume

U:%Q%EZ:%Q%EyE:%QyE

.. Total Energy of an Electrostatic Field Occupying a volume V is

W =%J-Qogdv

\Y

Note that dU =E.dD=¢,E.dE+E.dP where ¢ E.dEis the change in energy in
the absence of the dielectric and E.dP is the work done in polarizing the
dielectric.

Ade Ogunsola
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ELECTROSTATIC FORCES

Lines of an electric field tend to contract in a direction along the field line and
to exert a sideways pressure normal to the field line = field lines will thus exert
forces on their sources i.e. on the charges which give rise to them.

Fex _
Eb+Q An external force E g, must be applied to the plate of a

XT capacitor (assuming the other plate is fixed), to stop
> them moving together since F=-VW then

- E int = —FE gy In equilibrium

2 2
. A
Q9% inge ¢ = 02
2C  2,A X
Fo W Q? )A(:CZVZ)A(:eoAVZ)A(:gOAEZ)A(
TR o T 25AT  25AT 22 T 2 T

Field within the capacitor exerts an internal force on the plates (= and opposite
to Eg,) pulling the plates together. This force would compress any dielectric

present and may be large enough to break the dielectric.

Note:
1.  F o« E? ie. independent of direction of E .

QZ

2. For Q =constant from equation W ~>¢ principle of minimization of

energy = Internal forces will always act to increase capacitance.

Ade Ogunsola
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DIELECTRIC PARTIALLY INSERTED BETWEEN CONDUCTING
PLATES

iy L/?4Q:j§;IX

»
»

y

C= 50(' - Y)I + ‘C"O‘gryI _ gOI [| +(8 _1)y]

X X X r

2 2
woQ_ 0%

2C  2gl[l + (g, —2)y]

oW Q? X
F.o=—— —_
— OX 2£0|[| +(gr —1)y]5
e oW _ (5 -1Q% ¢

oy 2+ (g, —1)y)?

So the dielectric is pulled into the gap between the plates, as well as the plates
being pulled together.
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MAGNETIC EFFECTS OF CURRENTS AND MAGNETOSTATICS

MAGNETIC EFFECTS OF CURRENTS

Ampere, Oested, Biot, Savart....

e Two long parallel wires carrying currents in opposite directions repel one
another where as when the currents are in the same direction they attract
one another.

e If awire carrying a current is placed near a magnet it experiences a force.

Current produces a magnetic field!

Introduce B - MAGNETIC FLUX DENSITY [TESLA]

The force exerted on an element of wire dl; carrying a current I, at a place
where the magnetic flux density B can be expressed as

dE = ll(dllxﬁ) (1)

28

Ea
o
s

5 ot

The force exerted on an element of wire dl, carrying a current I, due to another
element dl, carrying a current I, can be expressed as

dF, =22 (g1, « (a1, xr)) @)
drr

Ade Ogunsola
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If we compare (1) and (2) we may say that the current I, in the element dl,
produces a magnetic flux density dB at a distance r where

7N
dB :4;r% (dlzxf) 3

Ly =47 x107" NA?,

Can use (3) to calculate B since

B = £ L 1(dlxr)

T Ar rs

Example 1. B produced by a long straight wire carrying a current 1.

.
T Magnetic Flux at point P due to element dz is
dB, = Ho Idzrglne
T 4 r
[Directed into the page]
z z=Rtan¢ sin@ = cos ¢
dz=Rsec’¢d¢$  R=rcos¢
B 2 2
f Therefore dB, = Hy lcos ¢Rs.ec2 pdgpcosg
i 4 R
Hol
B, =
" 4x J.— 7R

Ade Ogunsola
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Example 2. B along the axis of a current loop 1.

/__.I. e Idl L r. Therefore
dg_, Lo Az r?
\,/{&. Must sum results from around
% whole loop — each component

contributes dB = dBsing

along the axis and the L
components cancel.

B:yolj‘ singdl :,uolsmqﬁ J‘ dl :,uolsmqﬁ 9ra
7zr2 I 2

Ar o r? 4 Ay
sing=—o— r:(a2+b2)y2
(a2+b2)}/2
2
Soﬁz’uol a :
2 (a2+b2)é
2
When b >>a then Bz’uol aﬂ:; = ﬂOS(A|):“0r2
27 r 27r 27

A= Area of loop and the magnetic dipole moment m = IA[Am?]
AMPERES MAGNETIC DIPOLE

Ampere noted that the magnetic field configuration produced by a small loop of
current is identical to that produced by a small permanent magnet

Convention | circumscribes the vector dS in a right hand sense and m = IdS

o . i

Origin of all magnetism is electrical currents. Ampere proposed that permanent
magnetism was the result of ‘Atomic currents’ i.e. electrical currents flowing at
the atomic level.

Ade Ogunsola
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Note H in diagram not B we will shortly find out how H is related to B

Ade Ogunsola
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MAGNETIC EFFECT OF A CURRENT LOOP OF ANY SIZE

Can subdivide large circuit into a network of small
circuits in each of which a current | circulates. In
the interior the current in adjacent loops cancel =
Left with current flowing around periphery.

AMPERES CIRCUITAL LAW IN VACUUM

o

Have shown that for a long wire carrying a current | at a distance r, B = >R
T

and that the lines of B are concentric around the wire.

If we perform a line integral §;5.d1 on a closed path |1 which forms a circular

loop (radius r) around the wire we get

This works for any path! Why?

Because any given closed path around the conductor is approximated by
segments that are either radial or circular arcs about the conductor. The

contribution of radial segments to §5.d1 IS zero since everywhere B L to the

radius vector .. §5 .dl is the value over only the circular segments.

In fact for any current threading the area enclosed by a chosen path

§B-dl= !

Ade Ogunsola
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B AND H

Inavacuum B = g H
B=Magnetic flux density of the magnetic induction [Tesla=NA™"m™]
H= Magnetic Field [Am™]

Uy =47 %107 [NA? = Tesla A'm™] and is called the PERMEABILITY OF
FREE SPACE.

In vacuum
B=mH = {H.dI=I (A)
Amperes Circuital Law
I(d | x r)
H = Ixr
and H L pp (B)

[H produced at a distance r from | flowing along path 1]

Both (A) and (B) are true in any media.

Note: since ffﬂ.d[: | H field is not conservative unless | =0.

CURRENT DENSITY AND AMPERES LAW

If a path | is drawn within a current distribution, the total current | linked by
the path is | :I J.dS
S

773

—

J =Current density [Am™]

Since §ﬂ.d1:|:j J.dsS

S

[9p]

And Stokes Theorem states that iﬁﬂ‘dl = L VxH.dS = L J.dS

= VxH=J
Differential form of Amperes Law (only true for constant 1 ,Hand J).

Ade Ogunsola
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GAUSS, LAW IN MAGNETISM

Magnetic Flux = Total lines of B through a given area.

CD:LE.d§

Remember ﬁg .dS = a9 so in the absence of any charge ffsg .dS=0

)
Magnetic Monopoles don’t exist — only magnetic dipoles

= §5.d§ =0 always. Since Gauss’ Theorem states j v.gdv:<ﬁ85.d§
S v

£5 «dS =0 means that V.B =0 always.

Lines of B always form closed paths. No sources of B.

MAGNETOSTATICS ELECTROSTATICS

No charges, no electrical fields. Steady B,H and J all zero. D and E time
currents and time independent jndependent.

magnetic field.

fH-dl=1 E.dl=0
VxH=J VxE=0
VOEZO V.D:pf

Only if J=0 can we define a
magnetic scale potential ¢,, such that E=-VV

HZ—V¢M

Note: VxH =V x(-Vdg, )=0

Ade Ogunsola
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THE MAGNETIC PROPERTIES OF MATERIALS

All magnetic materials are affected by the presence of a magnetic field. When a
magnetic field of strength H exists within a substance it permeates the material

and produces “induced” magnetic dipole throughout the body of the material.
The macroscopic measure of this effect is the “MAGNETISATION” M.

M IS THE INDUCED MAGNETIC DIPOLE MOMENT PER UNIT
VOLUME [Am’m™ = Am™] — same units as H.

M is the magnetic equivalent of the polarisation P in electrostatics.

For simple magnetic media which are linear (M o« H), homogeneous and
isotropic then

M= yyH
where H is the field strength within the medium and y,, is the MAGNETIC
SUSCEPTIBILITY [Dimensionless].

[In electrostatics P = &, yE where yis the ELECTRIC SUSCEPTRIBILITY]

At room temperature the magnetic susceptibility is typically small and
independent of H - BUT for FERROMAGNETIC materials y,, is large and

very dependent on H.

DIAMAGNETISM (z;),
PARAMAGNETSIM (z,),
and FERROMAGNETISM (z;)

DIAMAGNETISM

DIAMAGNETIC substances are composed of atoms (or molecules) that have
no permanent magnetic moment. The atom consists of closed shells, so that the
magnetic moments associated with individual electron orbitals cancel out and
the total angular momentum quantum number J =0.

ny0e22<r2>

5 where n is the number of atoms per
m

It can be shown that y, =-

e

unit volume, Zis the number of electrons on each atom, <r2> Is the average
radius of the electron orbital and all other terms have their usual meaning. Note

Ade Ogunsola
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the minus sign, the “INDUCED DIPOLE MOMENT” (or induced current)
opposes the applied magnetic flux/field, y, is independent of temperature and

small in magnitude. Typically y, ~-5x107°Z for the noble gases (He, Ne Ar,
Kr, Xe) with 2.69x10% atoms m™ at RTP.

PARAMAGNETISM

PARAMAGNETIC substances consist of atoms, ion or molecules that possess a
permanent magnetic dipole moment. This atomic electron dipole moment arises
from the orbital motion of the electron and the electron spin.

The electron magnetic moment of a free atom can be expressed as
M =0,ugd

mmﬂegjz§+s@+n—L@+D

2 2J(J +1)
Is the Bohr Magneton, and J =L + S is the “Effective spin” angular momentum.
In the absence of an applied magnetic field the directions of the magnetic dipole
moments () of the individual atoms are randomised by thermal energy and the
net magnetic moment of a macroscopic volume is zero. When B is applied
dipole tend to align themselves in the direction of the field — Magnetic

alignment energy =-p.B. If E’E‘ <<kgT then the result is a small net

is the Lande g-factor, g =9.27x107%* Am™

alignment in the direction of the field — induced magnetic moment is in the
same direction as the applied B = y, >0 (positive!).

It the atoms/molecules/ions are sufficiently far apart that their mutual
interactions can be neglected (i.e. gas of low concentration of paramagnetic ions
in a diamagnetic solid) then

2
_Mhu”  C if

P TT T
n Number of atoms/molecules/ions per unit volume
1 =95pugd(3 +1)
C = Curie Constant
Note y, is positive, small and depends on temperature as % :

E‘E‘ << kgT

N~

For solids and liquids where interactions between paramagnetic atoms/ions
cannot be neglected

_C
T-0
C = Constant, & =Weiss constant can be positive or negative.

P Only works for T > 6|

Ade Ogunsola
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FERROMAGNETSIM

Ferromagnetic substances are all solid, and each is characterised by a certain
temperature known as the CURIE POINT at which the properties change
abruptly.

e Magnetisation is not proportional to H, in certain situations a
susceptibility of several thousand an be measured and very large
magnetisations can be achieved.

e The value of the magnetisation depends not only on the applied field but
also on the previous history of the samples.

e A sample may retain its magnetisation even in the absence of an external
applied field - PERMANENT MAGNETS. However, it is notable that
the very same material can also exist is a state showing little or no
permanent magnetism.

The ultimate source of magnetic moments in ferromagnetic materials turns out
to be the magnetic moments arising from electron spin — the big difference in
Ferromagnetics (cf. Paramagnetism) is that there are large interactions between
spins that cause them to align parallel with each other — even at room
temperature thermal vibrations cannot destroy the alignment.

i . Vstmeesred MALNETSATD |
M

hemboent |
hﬁtﬁ:j_-.ammm

N

_—h“ﬂ'\

e

Initially un-magnetised samples — as H increases M increases and eventually
saturates. If H is then decreases M does not go back to zero!

Ferromagnetic “Weiss” Domains

Interaction between spins results in preferential alignment — a quantum
cooperative phenomenon! So why aren’t a lumps of iron spontaneously
magnetised? A magnetic field outside the material involves stored energy

Ade Ogunsola
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=%Ivﬂ-5dv[J]. If the sample is “broken up” into differently oriented

“domains” the stored energy in this field is greatly reduced. This decrease must
be balanced against the energy stored in making domain walls. Now, look at the
magnetisation curve. As H increases at first nothing much happens, but then
preferentially oriented grains start to grow rapidly at the expense of others.
Finally the magnetisation increases slowly as the non-preferentially oriented
domains rotate parallel to the applied field (saturation). The whole process
requires Domain Wall motion.

A}] 13240m

Silicon
Steel

200 4sm

/' I
IUY .

Hysteresis: If the applied field is now reduced M does not follow the same
path (hysteresis).

The Curie Temperature (T,). Heating a ferromagnetic material above
T.causes a transition to the PARAMAGNETIC STATE, the susceptibility can

decrease by many orders of magnitude.

Relation between B, H, and M.
B = uy(H+M) [Tesla]
For linear media M= y,H = B=g,0+yyH
Or B=uuH where u, =1+ y,,
4, = RELATIVE PERMEABILITY [Dimensionless]

SUMMARY
DIAMAGNETIC MATERIALS: ‘;{M ‘ <<1 and NEGATIVE g, <1

PARAMGNETIC MATERIALS: |7,,| <<1 and POSITIVE g, >1
FEROMAGNETIC MATERIALS: |z,,| >>1 and POSITIVE 4, ~10-10,000

Ade Ogunsola
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BOUNDARY CONDITIONS IN MAGNETISM
We will consider boundaries between linear, isotropic and homogeneous media.

©  THE TANGENTIAL COMPONENT OF H IS CONTINUOUS

ACROSS A BOUNDARY PROVIDED THAT THERE IS NO
SURFACE CURRENT ON THE BOUNDARY.

©  THE NORMAL COMPONENT OF B IS CONTINUOUS ACROSS A
BOUNDARY.

OOOOOOOOOOOOOLOOOOOVOOOLVOOOOOOOOOLOYO

ANY SOLUTION TO AN MAGNETOSTATICS PROBLEM MUST
SATISFY THE BOUNDARY CONDITIONS.

OOOOOOOOOOOOOOOOOOOVOOOLOOVOOOOOOOOLOYO

THE TANGENTIAL COMPONENT OF H

® : Current flowing
along the surface
between regions 1 and

2 (ie. Into the page).
I '
H>

T
.

e -
.

Region 1 Region 2

P
by
g
g
q
g

Hr1 Hr2

+—>

AX

In region 1 the magnetic field (H;) makes an angle of &; with the normal to the
interface, and in region 2 H, makes an angle of 8, with the normal to the
interface. Therefore the magnitudes of the components of H tangential to the
interface are H,, =H,;sing, and H,, =H,siné,.

The line integral of H around any closed path in a magnetostatic field is equal
to the current threading the path ﬁﬂ.dlz I :jsg.dg. So if we consider the
path ABCD where AB, CD = Al and BC, DA =Ax, in the limit Ax—0

Ade Ogunsola
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jsg.d§—>0 since current density is finite in everything except a perfect
conductor.

§ Hedl=H,Al-H,Al=0

Hlt_HZt =0

then H, =H,
(Tangential component of H is continuous across a boundary)

Bx _ By
Hy

Because B = uyu, H

I.e. The tangential component of B is discontinuous as the boundary.

\ 4

(Aside: For a perfect conductor can consider a surface charge per unit length
js flowing in a vanishing thin layer at the interface, then the boundary

condition becomes H,, —H,, = js)

THE NORMAL COMPONENT OF B

Construct a Gaussian surface in the form of
a cylinder that “straddles” the boundary.

¥ AS e Make the thickness of the box Ax —0 so
T that no lines of B come out of the sides of
Nt N B2 the little Gaussian cylinder.
Regiq’/n 2

<
.
<
~ ]
< Hr2
<
~ 1
.
<

In region 1 the electric displacement B, makes an angle of ¢; with the normal
to the interface, and in region 2 B, makes an angle of €, with the normal to the

interface. Therefore the magnitudes of the components of B normal to the
interface are B, = B, cosé, and B,, =B, cos6,.

Ade Ogunsola
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Since§85.d§ =0 then §Slg.d§ = —§525.d§
B, AS = B, AS
Bln = BZn

Because B = uyu, H there is a “jump” in the normal component of the magnetic
field at the boundary.
/U2H2n = :UlHln

REFRACTION OF LINES OF B AND H .

i Boundary conditions:
| P.l %L Jjs =0 Hy = Hy Or

t‘\nf;';?*__,- /”Té';r Hl

B o Js =0H,sing, =H,sing,
: and

R, B,, = B,,0r B, cosé, =B, cosb,

So %coté’1 :%cot@2 and since B = u,x, H we find that
1 2

4 coté, = u, coto, : Refraction formula for magnetic field lines.

FIELDS WITHIN CAVITIES IN A MEDIUM
(OR RODS AND DISCS OF MAGNETIC MATERIAL IN A PRE-EXISTING
FREE SPACE B, AND H,)

/W% \ ~ ANEEDLE SHAPED CAVITY
‘. & Pre-existing magnetic field in media H,, . If

: )"“// o & “ = cavity long and thin so that we can ignore the
s TR‘“ ends (stay away from ends!)

| 5y . B B
4 £ d Tk s, Hc =Hy [Think Hrangentiar '] and i=%

| /// ; 2 ,-/ g Ho
b T :
PR A
| / Fa rd EE /'/ : i e
i ol . AR
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DISC-SHAPED CAVITY

e 5 - E? w. /-" - If cavity short and wide so that we can ignore
e T /T =m < - the edges (stay away from the edges!)
gy / " Bc=By  [Think Buoma ']

))\f T toHc = pHy

/ e l.e. He is i:yr times its value in the

'r// = 5 Ho

| 2 : 4 - -
b ; i medium
£ / LA 'I O g

| [ _,./ ."/ "

MAGNETIC CIRCUITS

General problem of magnetic bodies in external fields is extremely difficult! We
are involved in the simultaneous solution of

A ﬁﬂ.dlzl B: §55.d§:o C:

oo

= ,Uoﬂrﬂ

and the boundary conditions for B and H.

Don’t panic! There is one kind of situation involving Ferromagnetic materials
that is practically important and easy to solve (approximately).

THE ELECTROMAGNET: What is H in the air gap?

————— . We know that the current (i) in the coil,
| and the number of turns N, the cross
sectional area is A and the value of u
for all parts. We assume that the lines of
B are parallel to and confined within the
: f'ﬁ\ surface of the ferromagnetic (good
_ approximation when u large).
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Note everywhere

/ H parallel to path

A= §Hedl=Hl +Hl, + Hly+ H,l, + Hyls + Hglg

=Hy, (I, +1, +15+ 15 + 1)1, + Hl,

=Ni
B= {B.dS=0 — B,A=B, A
[Or think of Bpoma at the ferromagnet-free
space interface. This must be continuous]
C=B=uuH = toHg =y Hy

S H (L=1,)+ Hl, = Ni

Hwm
H, = NI and since gy, = i, 1o
&(L_|4)+|4
Hwm
Ho— NI and B, = HotiN
L+ (u, - D)1, L+ (g 1)1,
P dgewe
| '}5 | = K\J;‘\1+‘\-‘5+L¥+U&r}(c_
13 '
I
|
£
& S
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MAXWELLS EQUATIONS

GAUSS’ LAW

(i) ELECTROSTATICS

§Q.d§:Q:ijdv or V.

lw)
I
A}

D= Electric Displacement [Cm™]
(i) MAGNETOSTATICS

.d

[9p]

=0 or Ve

|oo
I
o

e
|0

B

Magnetic Flux Density [Tesla]

AMPERES CIRCUITAL LAW

ﬁﬂ“ﬂ:l: J.dS or VxH=J

H=Magnetic Field [Am™]
J=Current density [Am~]

FARADAY LAW OF ELECTROMAGNETIC INDUCTION

Oestred showed that an electrical current produces a magnetic field (1820).
1831 = FARADAY found that a current was induced in a circuit when a
magnetic field that links the circuit changes.

The EMF induced in a
circuit (given by line I) is

& :—82 (minus sign
oo at

L comes from Lenz’s Law).
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D = js B.dS (Any surface whose boundary is the line I)

T

® = MAGNETIC FLUX linked by the circuit [Tesla m? or Weber, Wb]

The induced EMF &, is equal the line integral of the induced E [Vm™] electric
field around the coil.
op 0

fE.dl=—""=-_[B.dS
| ot ot

Using Stokes Theorem jﬁlg.dl = IS VxE.dS

oB

L VxE.d§:—IS P

ds

_oB

W VxE=——
ot

CONSTITUTIVE RELATIONS

Ohms Law V =IR,R = 'OTRI Pr =Resistivity [Qm]
1

oc=— o, =Conductivity [Q " m™]
Pr
I _V =V A :\LUCA, re-arrange and we get 1. J=0o.E
R Prl A

Or in vector form (Homogeneous, isotropic media) J =o-E

So we now have:

D=¢gE+P D=¢y¢ E
B=,(H+M) B = o, H
J=0ocE

Ade Ogunsola
University of Lagos, 2008
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POWER DISSIPATION AND JOULE HEATING

Power is dissipated in the resistance R causing “Joule Heating”.

W:IV:V—:IZR

R
W:J2A2 I :UCEJ
Oc Oc
w=[J

Al = EJ x[Volume]

«Edv [Now works if E and J in different directions

and/or vary with position]

THE EQUATION OF CONTINUITY

75

DOLMME
Bows0E D oY

CBWMPE S

Imagine a volume of space v that at a given time
contains a total charge Q, where

Q= o
If charge can flow out (or into) the volume then there
| IS a current.
|:_@:_ a—'Odv but I:J'Q.dg
ot v ot S

[Think about the sign; charge decreasing implies
current flowing out of surface and note the surface is
closed]

Gauss’ Theorem states J'V V.Jdv= §S J.ds

So that jvv.gdv:—jvg—fdv or v.iz_a_f’

Ade Ogunsola
University of Lagos, 2008
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DISPLACEMENT CURRENT

In magnetostatics we found that j?lﬂ «dl=1 and hence VxH=J

But VeV xH=0 always (!) and V.J=0 always!
op i
V.J =0 only when EZO I.e. STATICS

RESOLUTION OF THE PROBLEM

V.D:p v.aD:a_p
ot ot
AsS VOJZ—a—p — VOJZ—v082 or V. J+@ =0
- ot - ot - ot
oD
Now we can see how we may amend Amperes Law Vxﬂ:g+—t

% = Displacement current density [Am~]

Total effective current =J +%—% [Am™]

J = Conduction current density [Am™]

| = jsg.dg Conduction Current
oD :
| = J'S p .dS Displacement Current (not a real current)

Ade Ogunsola
University of Lagos, 2008
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AMPERE-MAXWELL LAW IN A DIELECTRIC WITH A FINTE
CONDUCTIVITY

ob

VXH=Q+E J=0cE D=gE+P
Vxﬂ:JCE+£+EO£
0 ot

Conduction current
(Motion of free charges
through the medium)
Not related to a motion of
any sort of charge
Motion of the bound polarisation charges
in the vicinity of its nucleus.

In fact we have found that for time varying fields in vacuum (o, =0, P =0)
VxH=g¢g, oE
ot

We see a fundamental difference between dynamic and static electrical and
magnetic fields.

STATICS:

E and H are completely independent of each other.

DYNAMICS (examples in vacuum):

When s is finite must also have a H field where ~ VxE =—y, 88_?
or when aa—? is finite must also have a E field where VxH =g, 2—%

In dynamics E and H are coupled (cannot have one without the other).

Ade Ogunsola
University of Lagos, 2008
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MAXWELLS EQUATIONS

Gauss’ Law in electricity and magnetism

V.D

0

V.B=0

Ampere-Maxwell Law

Vxﬂzg+@
ot

Faraday Law
V X E — _@
ot

LINEAR AND ISOTROPIC MEDIA

"ot

oH
VXE:— el
E ==l ot

Ade Ogunsola
University of Lagos, 2008
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[M2]

[M3]

[M4]

LINEAR, ISOTROPIC AND
HOMOGENEOUS MEDIA

g, and g, independent of position
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GENERAL WAVE EQUATION

Consider a medium in which p=0, and that is LINEAR, ISOTROPIC and
HOMOGENEOUS (¢, and g, constants, independent of position)

D=¢E  s=455¢ B=uH  u=uu, J=ocE
V.E=0 V.H=0
Vxﬂ:aCE+ga—E ngz—ya—ﬂ

ot ot

Starting with VxH=0.E+ gaa_%

Take the curl of both sides

VXVXﬂ:GCVxE+8a(VXE)
ot
. ) aﬂ
Using VxV xF =V(V.F)-V*F and VXE:_”E
oH  o°H
VV.H—VZH:—O' ___8 h—
— — cH ot H 8t2
Since V.H=0
oH  9°H
V’H=0 — 4 U ——
-— C:u at ﬂ atz
Starting with VxE= _ﬂaa_?
Take the curl of both sides
VXVXE:—ﬂM

ot

Using V<V xF = V(V.F)-V°F and Vxﬂ:acg—kgg—%

oE O%E
V(V-E)-V'E=-poc _S-ue oz
Since V.E=0
oE 0°E
V’E=uo. —+ ue——
=T HO ot?

Ade Ogunsola
University of Lagos, 2008
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We have found the general wave equation

2
V?F = uo, %% + us ZtZE “The Equation of Telegraphy”

where F could be D,E,B,H or J or even currents propagating along cables.

THE WAVE EQUATION AND THE DIFFUSION EQUATION

CASE 1
In an ideal Dielectric medium (o, =0) orinavacuum o. =0, gy, =¢, =1
o°F o°F

V2F = ys—— = V2F = py6y—>

T S
CASE 2
Alternatively in a medium of high conductivity we find

08——>> gaZ—E :>a——>>gaz—E
HoC ot o2 c o2

[ 1 H H 77 2 aE
Then we get the “Diffusion Equation” V°F = uo. Y
0°F

WAVE EQUATION IN FREE SPACE - Plane Wave soln. of V2F = Ho&o GTZ_

PLANE WAVE = There exists a plane on which the field components do not
vary spatially, i.e. the magnitude of the field vectors vary with time but are
independent of position on the plane. The plane is called the “Plane of
Polarisation” and is also often called the “Wavefront”.

e.g. F(x,y,z)=jF(x)sin(x—vt) is a plane wave travelling in the positive x-
direction with a velocity v . The wave is polarised in the yz-plane, in this case
along the y-axis. In the yz-plane the field components do not vary spatially i.e.

application of the operators ai and aito this F gives a result of zero.
y Z

Ade Ogunsola
University of Lagos, 2008
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The velocity of propagation in free space is v = [ms™]

1
\ Hoéo

We have seen that E and H are “coupled” by the Maxwell curl equations, and
since F represents any of the field components these waves are called

“ELECTROMANETIC WAVES”. It was Maxwell who observed “that the
velocity of electromagnetic waves was the same as that of light and so light was
an electromagnetic wave phenomenon” — the unification of Electricity and
Magnetism with optics.

In S.I. units C =2.99792458 x10° ms™ [DEFINED]
to =47 x107 Hm™* [DEFINED]

C=

defines &, =8.854187814...x107** Fm™*

1
\ Hoéo

C

1
Jue  Jue,

. C JueE
Refractive Index n=—= = &
v e 1 &

In diamagnetic / paramagnetic media x, ~1 and so n = \/57, orn’ =g,

In a dielectric v=

n is an optical quantity and ¢, is an electrical quantity. Unfortunately n and
g, vary with the wavelength (frequency) of the wave — real media are
“DISPERSIVE”. Very difficult to measure n and &, at the same wavelength...

Ade Ogunsola
University of Lagos, 2008
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PLANE WAVES IN A LINEAR, ISOTROPIC, AND HOMOGENEOUS
MEDIUM WITH o, =0.

Consider the wave solution for E propagating in the positive x-direction that is
of the form E(x—vt)=iE,(x—vt)+jE, (x—vt)+k E,(x—vt) (note plane wave

so the operators 9 and o give a result of zero).
y

0 0z
oB oH
VxE=——==—y-—=
=T Ta T A
i ok
So we can write ngzi K
ox o0y o0z
E, E, E,

Similarly Vxﬂ:g%—% [cc =0,and D=¢E]

ik
o 9

y
y

i
VxH= K
OX

HX

0
H
oH
VxH=i{0} +] _oH, +k y
= OX OX

OE
(O, %8, | OF,
ot oot ot

Ade Ogunsola
University of Lagos, 2008
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. Inalinear, isotropic medium where ¢, and x, are scalar constants so that be
“D and E” and “B and H” are parallel. No component of the wave field is in
the x-direction. All wave components lie in the plane of the wavefront,
transverse (perpendicular) to the direction of propagation.

Plane electromagnetic waves are a TRANSVERSE wave motion in an
“isotropic” medium — called TEM mode (no longitudinal component of the
electromagnetic field.

From y-components (top line) and z-components (second line)

OE,  OH, oH, OE,
= U and - =&
oX ot OX ot
OoE oH
y:_ﬂéHz and y:88Ez
OX ot OoX ot

Note that only E and H components at right angles to each other are related by
Maxwells equations — suggests that E is perpendicular (orthogonal) to H.

EXAMPLE
Possible solution for E =k E, cos(mt — kx), if so what is the solution for H ?

i ] k
VxE= " 0 9 |—LjE, ksin(wt —kx)

OX oy 0z =

E, E,  E,cos(at—kx)

oH
VxE=— i e 1T O
ot ot ot
oH

- Eoksin(a)t—kx):—y#.

Integrate: H,, = LS E, cos(at —kx)
J70)

H =-jH, cos(wt —kx)

Ho :L E,
ou
H is in ANTIPHASE with E. Transverse plane polarised wave H and E

perpendicular to each other.

Ade Ogunsola
University of Lagos, 2008
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THE COMPLEX REPRESENTATION OF ELECTROMAGNETIC WAVES

We discovered in the last lecture that we had to solve equations of the form

The solution to this equation can be written in the complex form
E(x.y,2,t)=E(x, y, 2)exp(joot)

In general E(x Y, z) IS a complex number (vector) that varies spatially but is
independent of time.

o =2z f =Angular wave Frequency [Rad s™'], and f =Wave Frequency [Hz]

o 0°E

Note —=joE and =-0’E
ot

ot

Remember physical “wave fields” are REAL functions of position and time.
When solving a problem we must recover the “real part” from the solution —

note this is not as obvious as it may seem because E(x y,z) can be a complex
number. Using the complex notation the wave equation becomes

V?E = jouocE - usw’E

Remember we could replace E with D, B, H or J and the equation would
still be valid.

Ade Ogunsola
University of Lagos, 2008
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THE SINGLE PROGRESSIVE (COMPLEX) PLANE WAVE IN AN IDEAL
DIELECTRIC (o =0).

Must find a solution for E that satisfies the equation V°E = —w®usE

_ COHERNET
Assume the solution is of the form E(x,y,z,t)=E, exp[j(ot—kx)] TIME
HARMONIC
Amplitude of the wave oscillation WAVE

(Complex Constant)
k is called the spatial frequency or wavenumber.

jk is called the propagation constant.

¢ =—kx is the phase of the wave (so in any plane x =constant is a plane of
constant phase).
0°E 0°E

2 2

V2E:a——=—k2§ and aT_:_w2E
X

27 on

- —k2E = —uew®E and hence k =t ue =+ 2=+ =+

v A
e Kk =positive root = Wave propagating in the positive x-direction.

e k=+w. us which is a real number — peak amplitude does not change as
wave propagates in the x-direction. Wave is said to be “un-attenuated”.

Ade Ogunsola
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THE PHYSICAL SOLUTION — we want the real part of E(x, y, z) subject to
the appropriate boundary conditions.

We have E(x, y,z,t)=E, exp[ j(wt — kx)] but we know that there is no wave
component of the electric field in the x-direction.

L E(xy,2,t)=(JE,q + KE,q Jexp[ j (et — kx)]

Example 1

If E,q=E, and E,, =E,, (both E,, and E,, are real constants)

Then E(x,y,z,t)=( jE,, + KE,q Jcos(wt —kx)

Example 2

If E,q =—jE, and E,o =—JE,, (both E,, and E,, are real constants)

Then E(x,y,z,t)=(jE,q +KE,q sin(wt —kx)

Example 3

If Ejo=-]JE, and E,o =—je’E,y (E,p, E,o and & are real constants)

Then E(X, y,z,t)= jE,qsin(eot — kx)+KE,qsin(ot —kx +5)

The z-component E, leads the y-component E, by the phase angle &'

Ade Ogunsola
University of Lagos, 2008
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Now we have the electric field component, how do we get the magnetic field
component?

Vxﬂ:g@—E VxE——,ua—H
ot ot
i ok
vxE_LD 0 @
0X Qy 0z
0 E, ,

¥
I
)

oH
VxE=_u8
ey

= H,,=0

= jkE,p=—joH,, andhence H,, = K g

=~ JKEyo =—gjaH and hence H,j=—E

Ade Ogunsola
University of Lagos, 2008
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THE POLARISATION STATE OF AN ELECTROMAGNETIC WAVE

Consider the wave with E = j E,, sin(wt —kx)+K E o sin(wt —kx+ &)
ie. E, =E,sin(wt —kx) and E, = E,;sin(wt —kx+6)

Various polarisation sates of the wave are possible depending on the relative
magnitudes and phases of the two “E” components.

Consider any plane x=constant. Any such plane of constant phase and is called a
“plane of polarisation” or a “wavefront”. What happens in this plane as time
varies?

Consider the plane x=0. E, =E ,sin(wt) and E, = E, ¢ sin(wt + 5)

e If 6=0 or o=, the polarisation is LINEAR. The amplitude of the total
electric vector varies between zero and E =,/EJ, + EZ, .

o If5= i% and E,, = E,, the polarisation is CIRCULAR and the magnitude

of the total electric vector is independent of time.
e |If 0<o <rfigure s described in an “anticlockwise” sense.
o If —7z <6 <O0figure s described in a “clockwise” sense.

e Otherwise the polarisation of the wave is elliptical. The magnitude of the
total electric vector is never zero.

Ade Ogunsola
University of Lagos, 2008
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THE MAGNEIC FIELD
E, =E,sin(wt —kx)

VXEZ—ﬂ%%

E, =E,,sin(ot —kx+ )

We see (again!) that H,

Lecture 11

H, _k E, o sin(et — kx)
=

H, __k E,, Sin(wt —kx+5)
U@

H, =< E,gsin(ot—kx+ 6 £ 7)
U

— X E andH, =" E,

HO HO
b
= T ™
8=45 -
- i) L e 2
.\ &.‘
3 / ., =

-----

Ade Ogunsola
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ORTHOGONALITY E-H=E,H, +E,H, +E,H, =0

E and H are perpendicular to each other at all times!

WAVE IMPEDANCE/ INTRINSIC IMPEDANCE OF A MEDIUM

E, =E,osin(wt —kx) and E, = E,, sin(wt — kx+ &)

The magnitude of the electric field is E =,/E} + EZ

_ k \EUD £
Similarly H=,/H2+H2?=—"|E2+E2 = E= |ZE
y y z Lo z y ® L

)7,

5:\/2 [Ohm] INTRISIC IMPEDANCE OF THE MEDIUM
g

In free space 5: /ﬂ =377Q. In an ideal dielectric 5: Ho [Hr (real
)

& \ &
quantity purely resistive)

[Note: E:\/E\/Z and D = ¢E 50 |D| = /ue|H] etc]
H & \ &

ENERGY TRANSPORTED IN EM-WAVE

EZ\/Z = 8OgrE2:ﬂOﬂrH2
H g

2
&6 E

=ENERGY DENSITY OF ELECTRIC FIELD [Jm™]

2
2% H” _ENERGY DENSITY OF MAGNETIC FIELD [Im?]

g,6,E* = uyu, H?> =Wave energy is equally divided between electric and
magnetic components of field in dielectric medium.

Ade Ogunsola
University of Lagos, 2008
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ELECTROMAGNETIC WAVES IN MEDIA OF FINITE CONDUCTIVITY.

Relaxation Time of the Medium

Linear, homogeneous, isotropic medium of conductivity o, which contains free
charge of volume density p

Equation of continuity V.J +Z—"E =0

J-0.E = P__v.5.E

ot
Do¢E = P__%y.p
ot &
op o op o
VeD= = S —-_—C or —+—C =0
== ot 8'0 ot 8'0

Solution of which is p(x,y,z,t)= p(x, Y, z)exp(—lj where 7= -2 and is
T Oc

called the “relaxation time”.

e.g. Forcopper o, =5.8x10" Q'm™ and &, ~1 sothat 7 ~107*s
For pure water o, ~10° Q™'m™ and &, ~80 so that 7 ~10~°s

.. If a free charge density is present in a conducting medium, it decays away at
a rate that is independent of any applied fields. = Eventually all the free charge

resides on the surface of the medium — A well know result in Electrostatics of
Conductors!

It is impossible to create a stable free charge distribution in a conducting
medium.

Ade Ogunsola
University of Lagos, 2008
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Plane Waves in a Conducting Medium

Assume plane wave travelling in the x-direction E =E exp[ j(ewt —kx)]

2
Wave Equation: V°E = uo. %% T ue (thﬁ

~k’E = jouo E—- o’ usE

or k? = 0® e — jouo, (1)
If we let k=a— jB then k? =a? - B*-2jap (2)

So using (1) and (2) we get
a’ - Bt =wlus
and
203 = wuo;

Which we need to solve for ¢ and S

0°E

OE ‘
pE——

G__
,Ucat

CASE A: “Poor Conductor” = <<

ot?

= 2af<<a’-p*

For o, =0 we see that #=0 and k* =a® = w’ue

2
Alternative approach for o, =0 wave equation becomes V°E = ue thE

With E =E, exp[ j(ot —kx)] we get  —k2E = -0’ ucE

k? =w?ue

k:a)\/ﬁ

r_o_

Since k = we see that when o, =0 both k and n are real.

@ own
\' C
Ade Ogunsola

University of Lagos, 2008
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Ga_E
ﬂcat

=  ouo. >>0’us

CASE B: “Good Conductor” = >>

ot?

0°E
HE——F

Lecture 12

oc >> we
O
w<<—5
&
2 2 2
OUT >> O UE = 2 >>a° - f
. Uo
So if we assume a® — 8% ~ 0 and hence a* ~ f° z%
oE

Alternate approach: For a good conductor VZE ~ uo at

—k?E = jouc.E and k* = - jouc.. Sowith k =a - jf

k?=a’-p*-2jaf =-jouoc,

and o = £ and az:ﬂz:a)ﬂ_z%

Remember E =E, exp [j (ot — kx )]

We know from before that since the x-component of the Maxwell curl equations
are zero there is no wave component of E or H in the x-direction.

For simplicity we assume E = jE,, exp[ j(ct —kx)]

Inserting k=a— jf gives

E = JE, exp[- A x]exp[j(wt - )]

The electric field is attenuated as the wave propagates

and S = Attenuation constant [m™]

Ade Ogunsola
University of Lagos, 2008
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The magnetic field is obtained from the specified electric field using the
Maxwell curl E equation: VxE=-u oH

ot
i ]k
vxE=l2 2 92
ox 0y o0z
0O E, O

VxE=i{0} +j{0} +k

j {% (E, o expli(ot - kX)])}

We see that H = kH,, exp[j(wt —kx)]

QD
—

I
| —
—
o
~
+

| e
—_

j (0) +K%(I:IZO exp| j(wt - kx)])

Using VxE=-u oH

ot
=

~ JKE, o = —tioH 4 and hence H _ K g

H = k(ﬂ% Eyojexp[ j(wt —kx)]

Inserting k=a— jf gives

H=k (a;aj)'g) E,, exp[-Ax] exp[ j(at-ax)]

Writing o — jf = \Ja® + B? exp(— j¢) where tan ¢ W

o

2 2 _
H = k“—;ﬂ E,o exp[- A x]exp| j(wt —ax - ¢)]

But a? = p° :—“’“200

Ade Ogunsola
University of Lagos, 2008
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M=k % el pxlespl ot -ax-o]

E = JE, exp[- B x]exp[j(ot - X)]

o Like the electric field, the magnetic field is attenuated as the wave
propagates.

e \We note also that the magnetic field lags behind the electric field by a

phase angle ¢. In a good conductor & = £ so that ¢ :%.

e Inagood conductor we define the “skin depth” 6 = 1 = 2 [m].
OUOT
When the wave impinges on a good conductor practically all the
transmitted energy is absorbed in a few “skin depths” — i.e. converted to

“Joule Heat” within the material.

WHAT IS A GOOD CONDUCTOR?

If @ <<ZC then the material is a good conductor!
&

For example:

Pure water: EM radiation at 5x10"* Hz, &, =2.33 and o, =10 Q'm™
Oc 107°

€06, 8.85x107 x2.33

Hence at these frequencies, fresh water is a very poor conductor! Waves
transmitted without much loss.

Sea water: EM radiation at 1000Hz, &, =80 and . =5Q'm™
oc 5
g6 8.85x107% %80

Hence at these frequencies, seawater is a very good conductor! Waves
rapidly attenuated.

= 4.85x10° which is << 27 x5x10%*

= 7x10° which is >> 27 x10°

Ade Ogunsola
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Plane Waves in a Conducting Medium (General Solution)

Assume plane wave travelling in the x-direction E =E, exp[ j(ewt —kx)]

2
Wave Equation: V°E = uo. a@% + e Ztlzj

~k’E = jouo E— o’ usE

or k? =0 e — jouo, (1)
If we let k=a— jB then k? =a? - B*-2jap (2)
So using (1) and (2) we get

a’ - Bt =wlus (A)
and

200 = wpo (B)

Which we need to solve for « and f

wzﬂzo_z
Eqn. B gives us f? :4—2‘3, which we can use with Eqgn. A to get
o
2.2 2 2 2 2
w O [0 (o)
az—'u—zc:coz,ug = a4—a)2,uga2—L=0
4o 4

2 4 2 2 2 2 2
o uEt o uE +to o ]
2= \/ . Using a?- B% =w’ue and ¢ = L

2 Ho&g

(04

2

2

w 2 o

= g2=24 +& +.]& +( CJ
2c?

Ade Ogunsola
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Note o —0 B? -0 and a? > 0’ue

(o) au.o
Note —&>>1  oa°=p°= i <

EW 2&,C
We saw that for E = JE,q exp[- £ x]exp[ j(ot - a X)]

a’+ B = :
we got H = k~—"—E  exp[- 5 x]exp|j(ot —ax—¢)]
w
where we have written o — jf# = \Ja® + B exp(— j¢) and tan ¢ P
(04

Refractive Index

We should also notice that in a conductor (ac #* O) the refractive index is

complex
21,2 2 2
wn , C°k Cc ’ : C°( > PR
K=— = n® = =—\o“ue— jouo, |=—\la“ - p°-2j«,
c 6()2 6()2( ,Ll J lu C) a)z( ﬂ J ﬂ)

. O
n2 :/ur(gr - J_C]
o)

So we see that a complex k means we must have a complex n.

So we could write n=n, — jn, and equate with k =« — j# giving

Cc Cc
on 27 o 2 . A C
Now —% =="n_ =— === so that we can write A ="2and v=—
c A v o4 n, n,

The wavelength A4 and the velocity vin the medium are determined from the
free space values by n, or equivalently « .

The Range of the wave in the medium is determined by S or equivalently n ,.

Ade Ogunsola
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THE SKIN EFFECT IN GOOD CONDUCTORS: ouc. >> o’ us

a’ :ﬂz :a)y% and the “skin depth” & :l: 2

OUO

We can now re-write the E field we are using in the previous example as
~ X : X

E = jE, ,exp| —— |eX ot ——

== p[ 5} pH 5ﬂ

Since J = o.E

J=jl, exp{— g} exp{ j(a)t —gﬂ

The E field causes a current to flow in the conductor and the wave energy is
dissipated in a few skin depths as Joule Heating and both E and H fields decay
to zero. (What happens in a perfect conductor?)

Now consider the flow of current down a wire of circular section and radius a.

In the D.C. case @ — 0 the current density is uniform and | = Jza?.

But at high frequencies practically all the current flow is confined to a thin
“sheet” or “skin” at the surface. The maths to show this involves Bessel
functions — but if a >> ¢ then we can find

b=3=3,., oqf -1

If a>o 95% of the current flows within 36 of the surface = hollow

conductors are as good as solid ones! Note as & o« @ the higher the
frequency the thinner the skin, which implies the higher the resistance since
effective area gets smaller as @ increases.

Ade Ogunsola
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ENERGY TRANSFER BY AN ELECTROMAGNETIC FIELD

THE POYNTING VECTOR

Start with the Maxwell curl equations:

VXH:J+8—D VXE:—a—B

- ot ot
E.VxH=E.J+E. > H.VxE=-H.2>
ot ot

For any two vectors V. XxY=Y.VxX-X.VxY

Therefore VeExH=-E«J - E.82+H.6§
ot ot

Consider volume v bounded by a surface S and integrate over the volume

j V.Exﬂdv:—J E.Jdv—j [E.82+ﬂ.aﬁjdv
v v v ot ot

II=ExH POYNTING VECTOR [Vm™'][Am*]=[Wm?]

Gauss’ Theorem LV Mdv= iSSg .ds

ﬁg.d§+IE.1dv:—j E.(9D+ﬂ.5B dv POYNTING’S
S v Y 6t at —
THEOREM
For linear and isotropic media: D=¢E and B = zH
2 2
fi.ds+ [ Eedav—-C [ E5 A0 gy PE—
S v otovi 2 2

Ade Og_unsola
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Interpretation of Poynting’s Theorem when the volume does not contain a

POWEr source.

§£.d§ +

}

2 2
o f[eE uty,
otv{ 2 2

|

By conservation of
energy this must be
the rate at which EM
energy is leaving v
through the surface
S

=  Power flow
through S[Js'=W]

I 2
- ngV_J‘VJ PR dV

(using J = o E)

EM energy is dissipated
as Joule Heating within
the volume. [Js'=W]

Sum of the Electric and
Magnetic energies in the
volume (as derived in
statics) =

2 2
j ¢E +'UH dv
vi 2 2

2 2
g
otv{ 2 2

= —1x(Rate of change of
EM energy in the volume).
= Rate of decrease of EM
energy in the volume.
[Js'=W]

NOTE (1) The EM energy within the volume decreases because some is
converted into Joule Heating of the medium and the rest is leaving the volume
through its surface.

NOTE (2) If = o, =0. No Joule heating and all of power flowing through the
surface

2 2
H,dgz_g £+ﬂ dv.
S otovi 2 2

NOTE (3) II = Flux of power through the surface.

Ade Ogunsola
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Interpretation of Poynting's Theorem when the volume contains a power source.

What is the power source?

Eg. 1. Inside a battery an electric field E is produced by an electro-chemical
reaction — work done by chemical reaction.

Eg. 2. Within a dynamo an electric field E' Is produced by electromagnetic
induction — mechanical work done.

The current density at any point is now given by

J-oo[E+E) =E-L_E
(o)

!

LE.Jdv: idv—LE' <Jadv

\"
O¢

l

As before this term
represents EM energy
dissipated through Joule
Heating  within  the
volume. [Js*'=W]

within the volume
[Js'=W] P,

Power  generated

~. Now Py :§Sg.d§ +

}

2
J—dv + 0

Vo-cl av

2 2
(—gE +ﬂH ]dv

212

Part of Power
generated  within
the volume leaves
through surface.

Part of Power is
dissipated  within
the volume as Joule
heating.

The remainder
increases the EM
energy contained
inVv

Note in ideal dielectric J =0. In steady state %( )—> 0, .. all power generated

flows through the surface so P, = §Sﬂ .dS

Ade Ogunsola
University of Lagos, 2008
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Applications of Poynting’s theorem

Linearly Polarised Plane Wave in an ideal dielectric

E=jE, E, = E, cos(awt —kx)

E, _ [u

H, £
H=kH, H, :\/EE0 cos(et — kx)

7
M=ExH=iEH,
I, = \/EES cos®(at —kx) [Note always positive]
u

. Time average Poynting Vector (IT,) =% \/EES = \/EEéMS
7 H

NOTE: {Mean rate of energy flow} _ {Mean energy} y {Velomty}

per unit area density of flow

m,) =W <

1 1 1 E,°
(W) :§<5E2 +pH?) :Z[EEOZ +;¢H(,2]:Z[g|502 +5EOZ]: A
I,) 1
. 7 Hurray!
/] t = gonst

: . = Distarice x
/ xS
Power Flow

(Direcrion of the Poynting Vector IT)

Ade Ogunsola
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Power Dissipation in a wire (constant current)

Consider a circular wire radius

P aTrmEma acarrying a current 1.
b gl
EIVE If V isthe P.D. dropped between
i z,and z, +1
11T =71
EEmee ~[*"E,dz=-v E, =V

Zy |

[Note forall r<a, E, :\T/ but for

r>a E,=0]

At r >a Amperes Law gives

E=%E,and H=¢H, so H=ExH=2E,x¢H,
vV | . . VI ~

M=-—72xp=—(-F

- | 2zr @ |27rr( )

Now consider integration over surface of wire:

~fI.ds=—§ v (—f).dgzlgnaIZ;za:VI
T

it;s II.dS is negative i.e. power flows inwards from the surface.

I.e. The power dissipated in the wire is a result of an “inflow” of power
associated with fields of the wire through its surface.

Note in this case the % term in the Poynting’s theorem is zero

ra’

ra’l =Vl

Y
_§Sg.d§:jvE.JdV=T

Ade Ogunsola
University of Lagos, 2008
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Consider a constant current | flowing to increase the charge on the plates
of a capacitor.

0
X |
vV, .
For r <a we get E:E(_Z)
: , _ oD
Applying Ampere’s Law: ﬁcg.dlzjsadgz—l : r>a
For r >awe get H:(—A)L
o —2rr

M-ExH-—"(-f)
27 rd

Now consider integration over surface at edge of capacitor

~fmeds = (-7)-ds -

“Inflow” of power associated with fields at the surface. In between the
plates conductivity is zero — no Joule Heating. Where is this power
going?

2 2
_fmeds= 2 [ ZE AP gy
S ot'vi 2 2

Ade Ogunsola
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Electromagnetic Momentum Density : G

G=DxB [Cm?Tesla] = [Cm?NA™'mM"] = [Asm*NA'm™]=[Ns m?]
For linear media

G=DxB=¢ExuH=cuExH =eull

G-=

<[1=

Radiation Pressure

Consider an EM wave propagating with velocity v = % in a linear
HE

medium.

If the wave is incident normally on a totally absorbing surface, then in
one second the momentum absorbed per unit area of the surface =v.G

Therefore, P :@ [Nm™]
v

: : 210
If the surface is perfectly reflecting P, = H
v

The Poynting vector and the complex field notation.

Suppose that

E =E, exp[ j(ot —kx)]
and H :ﬁ

o explj(wt —kx)]
Then E x H oc exp( j2at) - time average over one period is zero!
I = Re(E)xRe(H)

Ade Ogunsola
University of Lagos, 2008
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Reflection and the Fresnel Equations

“Books are like a mirror. If an ass looks in, you can't expect an angel to look out.” B C Forbes

Reflection of Plane Wave at a Dielectric Boundary (incident on dielectric from

free space).

(1) Normal Incidence

E, =IiE,, exp[j(a)t—klz)] X

= jHo, exp[j(et —k,z)]

H,
Ky = @+ o€,

Im
_|

\
A\

Er =iEqz EXp[j(C‘)t + klz)]

Hg =-jHor exp| j (et + k2 )]
E; =iEy exp[j(a)t - kzz)]
Hr=]jHyr exp[j(a)t - kzz)]

K, :a)\/ﬁ

Place boundary at z=0 and use boundary conditions.
Tangential component of E-field must be continuous at boundary.
Eoi + Eor = Eor (A1)

Tangential component of H-field must be continuous at boundary (so long as no
surface currents).

Hoi —Hor = Hor
Eo
We know that — H, etc:> / Eo — / Eor _\/7 oT
=B —Eor =146 Eor = By —Eor =NEgr (B1)

[Assuming g, =1]

Ade Ogunsola
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Using (Al)and (Bl)  t = =0T = 2 andr —or 170
Eow 1+n E,, 1+n

Reflection Coefficient = Reflected energy/Incident energy

_ Time averaged reflected Poynting vector
Time averaged incident Poynting vector

2 2
Eo 1+n
Transmission Coefficient=1-R

1

60 2
T an 2\ 1 or _ Time averaged transmitted Poynting vector

1+ny 1 \/?ES. Time averaged incident Poynting vector
MU

2

Ade Ogunsola
University of Lagos, 2008
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(2) E field perpendicular to the plane of incidence

Tangential component of E-field must be continuous at boundary.
Eoi + Eor = Eor (A2)

Tangential component of H-field must be continuous at boundary (so long as no
surface currents).

—H,, cos 6, +H, cos b, =—H . cosé;

& & &
|=2Eg €058, — | —>Eyg COSOg =, |—Eqr cOSO;
Mo Mo H

E, cosO, — Eyg oSO, = nE,; coso;
[Assuming u, =1]
and usingcosd, = cosd,

E, 0S8, — Eyr COSH, =nEy; COSO; (B2)
. E 2c0s6
Using (A2) and (B2) t, =—"= '
E, Cc0sd, +ncosé;
= Eor _ COSO, —ncost;
oi C0SO, +ncoso;
E field perpendicular to plane of incidence
1, T °
o
0.8
y EEEm o* *
x 0.6 Smmg, *?®
B PS 0.4 PP PP TS ¢ L J | m -
e ........................ u [
E /\ NI 021 R n
’ 2 T 0. ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ [ | -
0 10 20 30 40 50 60 70 80 90
Angle of Incidence (Degrees)
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(2) E field parallel to the plane of incidence

Tangential component of E-field must be continuous at boundary.
E,, cos8, — E,, cosd, = E,, cos b, (A3)

Tangential component of H-field must be continuous at boundary (so long as no
surface currents).

Ho +Hor =Hor
[Assuming g, =1]
and usingcos 8, = cos b,
Eq + Eor = NEqy (B3)
Using (A3) and (B3) t = Eer  2c0sé,

E,, ncosé, +cosé;

- Eor _ NCOSH, —cCoso;
: E, Nncosé, +cosé;

E field parallel to plane of incidence
T
1 [ ]
gite A
-
0.8 ..I -
L L
x op HEEH
o
— 0.4 XTI
*e
02+ R *s °
°
*e
3 0 T T T T T T T \.e.\ .
01 0 10 20 30 40 50 60 70 80 90
Angle of Incidence (Degrees)
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Note 1: The formula given above are called the “Fresnel Equations”.

Note 2: The formula above can be simplified using Snell’s Law
n,sin@, =n,sin@,, or in our derivations sin &, = nsin &,

sin(6, —6; ) tan(@, -6, )
=" 2 = o)
sin(6, +6; ) tan(6, +6; )
(- 2sin 6; cosé), . 2sin 6; cosé,
* sin(6, +6; ) 1™ sin(6, + 6, )cos(6, —6;)

We see that , — 0 as 6, +6; —>% so no light is reflected for this polarisation.

Note also that r; changes sign at &, +&. :% so there is a phase shift of 7 in

the reflected parallel components of the E- (and H-) fields when sweeping the
incident angle 6, through the polarisation angle 6, (6, is the value of 6, for

which 6, +6; = %). However, r, is always negative so no phase change in the

reflected perpendicular components of the E- (and H-) fields.

Note 3: Be careful using the Fresnel Equations, must get the polarisation
correct! Easy to get confused!

Note 4: Can calculate the reflected and transmitted intensities using the Fresnel
Equations.

Note 5: Could derive the Fresnel Equations for transmission a boundary where
n, > n; and investigate total internal reflection...but not here! See for example

Optics (Second Edition) by Hecht.

Ade Ogunsola
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Reflection at a conducting boundary.

Consider the case where plane wave travelling in free space strikes at normal
incidence a conducting boundary

E, =iEq exp[j(et —k,2)] Ky = @~/ po&0
H, =jH,, EXp[j(a)t - klz)]

Im

r =1Egg exp[j(a)t + klz)]

Hg =—jHgg exp[j(a)t + klz)]

E; = iE,; exp[- S z]exp[j(ot —a 2)] k,=a—jB

Hy = jHor expl- B z]exp|j(ot —kz)]

H; = j(a ~1p) Eor exp[- A z]exp| j(wt —kz)] (See lecture 12)
Y e

Boundary at z =0. Tangential component of E-field must be continuous at
boundary.
Eoi + Eor = Eor (A4)

Tangential component of H-field must be continuous at boundary (so long as no
surface current unit length flowing on the boundary, i.e. we have a good
conductor not a perfect conductor).

H0| - HOR = HOT

OR — 0T
0 Ho MO
For a good conductor o = S = wﬂzac
. O,
Eoi —Eor = (1_ J) 5 “—Eqr (B4)
WU &y

Ade Ogunsola
University of Lagos, 2008
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Using (A4) and (B4)

) o
1-(1-j) |-
r = EOR — 2a)ﬂr80
n
E . o
o 1+(1-j) 2@;8
reo
2
Rn :[EOR] zl_z za)lur‘C’b
Eo, Oc

2a)/urgo

For copper at infrared frequencies (around 10 Hz) ~0.01, so about

Oc
98% of infrared radiation is reflected, the remainder is absorbed in the metal
due to Joule Heating.

Za):ur ‘90

At lower frequencies (e.g. radio waves) ~107° almost all radiation is

Oc
reflected.
At higher frequencies (>10" Hz), simple theory does not work, we need to take

account of the atomic transitions that take place and give rise to the colour of
the metal.

Ade Ogunsola
University of Lagos, 2008
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