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DIV, GRAD, CURL AND ALL THAT……… 
 
Scalar Functions       e.g. Temperature T (x, y, z) 
 
 

Function of (x, y, z) 
 
Vector Functions:  
 

( ) ( ) ( ) ( ), , , , , , , ,

and are scalar functions
x y z

x y z

x y z F x y z F x y z F x y z

F F F

= + +F i j k
 

Specifies magnitude and direction e.g. Velocity of a fluid 
 
 

Coulombs Law  
1 2

2
0

1 ˆ
4 r

q q u
rπε

=F  

 
• Products of charges 

 
• 2

1
r  

 
:- Acts along line joining q1 and q2 

 

    q1 and q2 

 

(in vacuum) 
 
 

q1 

ûr 

q2

r 

 
 
 
Principles of superposition 
 
If F1 is the force exerted on q0 by q1 when there are no other charges nearby, and F2 is the force 
exerted on q0 by q2 when there are no other charges nearby, then the principle of superposition states 
that the net force exerted on q0 by q1 and q2 when they are both present is the vector sum F1 + F2. 
 

• All forces are vectorally. 
 

• Force between two charged particles is not modified by the presence of other charges. 
 
 
Electric field at r due to the charge q1 

 

( ) ( ) 1
2

2 0

1 ˆ
4

qr r
q rπε

= =
F r

E u  

 
 
 
 
 
 
 
For a group of charges 
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2
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1 ˆ
4

N

l
l l

q q r
πε =

=
−

∑F r ur
r r

   Force on q0 at i y k= + +r x j z  

                                                                                    due to charges  at lq lr
 

 ( ) 12
10

1 ˆ ,
4

N
l

l l

q u r
πε =

=
−

∑E r r
r r

   Electrostatic field at 

x y z= + +r i j k   
                                                                                   due to charges  at lq lr
 
 

 ( ) ( )
1

1 1

21
0

ˆ ,1
4 V

r r dvρ

πε
=

−
∫∫∫

r u
E r

r r

1

 

 

r

r1

( )1ρ r

∂v

V1 

 

For continuous distribution 
of charge. 

 1 1Q vρ= ∂r   
 
 
SURFACE INTEGRALS AND THE DIVERGENCE.

 
  

q n̂  

∂s 

Surface S 

 

 Gauss’ Law 
 

ˆ
S

qs
ε

∂ =∫ E ni

n̂  : Unit vector normal to the surface. 
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SURFACE INTEGRAL 
 

 ( ), ,x y zF

( ), ,x y zn

∂s Parts of surface area 
 

       ( ) ( ), , , , "Flux of F"
S

x y z x y z s∂ =∫ F ni  

 
 
Can be                           For closed surface 
open or                          points outward from 
closed surface               the volume enclosed  
                                      by the surface 
 

 
 
 
 
Mass flow 
 

 S 

 

 
 
T
 

 
S
f
 
 
 
 

A
U

S∆

n̂

 Rate of flow = Sρ ∆v ni  
 through S∆  
 
 
 Total flux =  

S
sρ ∂∫ v ni

 
 
 
 

ρ  : Density    V : Velocity of mass flow. 

HE DIVERGENCE 

( )

0 1 ˆ
about S

Lim
V

div s
V

x, y, z

∆ →
=∇ = ∂

∆ ∫F F F ni i  

calar quantity which is a  
unction of position (x, y, z) 
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     Consider a little box 
 
 
 

ˆ
z∆

n
 

y∆

S1 

x x+ ∆x 

2
n̂

S2 

 

2x yF F F= + +F i j k

 
 

 
1 2

ˆ
S S

Fxs Fx x Fx
x+

∂⎡ ⎤∂ + ∆ − ∆⎢ ⎥∂⎣ ⎦∫ F ni Y

 
x xF Fx z y V

x x
∂

= ∆ ∆ ∆ = ∆
∂ ∂

 
Do the same for the other faces 
 

1 ˆ yx z
S

FF Fs
V x y

∂∂
z

∂
⇒ ∂ = + +

∆ ∂ ∂∫ F ni
∂

 

 
 

        yx z
FF F

x y z
∂∂ ∂

∇ =  + +
∂ ∂ ∂

Fi

 

       
x y z
∂ ∂ ∂
+ +

∂ ∂ ∂
i∇ = j k  

 
 
DIVERGENCE THEOREM  
 
 

ˆ
S V

s∂ = ∇∫ ∫F ni 
 
 
The flux of a vector function through a closed sur
that function over the volume enclosed by the surf
 
F  must be continuous, differentiable and its first d
 
 
 
 
 
 

Ade Ogunsola 
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x
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FF F
x+∆ x∂

= + ∆
∂

z y∆  

 

V∂Fi
face equals the (triple) integral of the divergence of 
ace. 

erivatives are continuous in V and on S. 
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LINE INTEGRALS INVOLVING VECTOR FUNCTIONS 
 
 
 

x 

y 

z 
F(x, y, z) 

l2 ρ 
l1 

 

Work done by force in  
moving a particle along  
the curve from l1 to l2 

 

( )
1 2

ˆ, ,c
l l

x y z lω
→

= ∂∫ tF i  

 
 

( )ˆ x y zl
l l l

∂ ∂ ∂
= + +

∂ ∂ ∂
t i j k t̂    unit vector tangential to curve at point P 

     (only the component that acts along path does work) 
 
∴   x y zC

F x F y F zω = ∂ + ∂ + ∂∫
 
The value of a line integral can (and usually does) depend on the path of integration. 
 
Path independence of work done by Coulomb Force. 
 

 

q 

z 

r 

q0 y 

x  

Coulomb Force on q 
 

0
2

0

1 ˆ
4

qq
rπε

=F u  

 

ˆ r x y
r

z+ +
= =

i j ku
r

 

 

0 3
0

1 ˆ
4

x y zqq l x y z
rπε

+ +⎛ ⎞= ∂ =⎜ ⎟
⎝ ⎠

i j kF t ∂ + ∂ + ∂i j k  

 

       2

1

0
3

0

ˆ
4

r

C r

qq x x y y z zl
rπε

∂ + ∂ + ∂
∂ =∫ ∫F ti  

 
 

2
2

1

2 2 2
0

2
04

r

r

qq rr x y z
rr r x x y y z z πε

⎡ ⎤ ∂= + + + =⎢ ⎥
∂ = ∂ + ∂ + ∂⎣ ⎦

∫  
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   0

0 1 2

1 1
4
qq

r r
ω

πε
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 

 
Haven’t had to specify C!  Get same answer whatever path. 
 
Have considered only one charge.  If there are many  q0, q1, q2…..qN  then total force on q 
 

0 1 2

0 1

.....

ˆ ˆ ˆ .....

T N

NC C C
l l l

= + + + +

ˆ l∴ ∂ = ∂ + ∂ + + ∂∫ ∫ ∫ ∫

F F F F F

F t F t F t F ti i i i

                       

 
(Principle of superposition)  

 
 
Coulomb force depends only on distance between two particles and acts along the line  
joining them  ←  Central force. 
 
For any central force   ˆ

C
l∂∫ F ti   is path independent 

 
 

C1

C2 
P1 

P2

 
 

ˆ 0l⇒ ∂ =∫ F ti  

 
Since         F E ˆ is path indepen

C
q l= ⇒ ∂∫ E ti

ˆ lˆ ˆl l∂ = ∂ = −F t F t F ti i ∂i  

 
And            ˆ 0

C
l∂ =∫ E ti

 
 
   Conservative field 
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University of Lagos, 2008 
 dent

1 2 2C C C∫ ∫ ∫

aogunsola
Sticky Note
Marked set by aogunsola



Electromagnetic Theory Page 7 Lecture 1 
 

Curl F = ∇ × F 
 

y yx xz z
F FF FF F

y z z x x y
∂ ∂⎛ ⎞ ⎛∂ ∂∂ ∂⎛ ⎞∇ × = − + − + −⎜ ⎟ ⎜⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝

F i j k
⎞
⎟
⎠

 

 

x y z

x y z
F F F

∂ ∂ ∂
=

∂ ∂ ∂

i j k

 

 
 
Stokes Theorem  (F  could be any vector field) 
 
 

ˆ ˆl s∂ = ∇ ×F t n Fi i ∂ 
 
 
The line integ
surface integr
surface of the 
F  Must be co
 
 
The meanin
 
Think of wate

of water at (x,

 

 (xV

 
 
 
Consider El
 
 

C∫ E
 
 

⇒ 
 
Note:  if   ∇×
 
 

Ade Ogunsola
University of L
C S∫ ∫

ral of the tangential component of a vector function over some closed path equals the 
al of the normal component of the curl of that function integrated over any capping 
path. 
ntinuous and be differentiable and have continuous derivatives on C and S. 

g of curl   

r draining from a bathtub  →  not quite going to do this but  →  consider a small volume 

 y) where      
cos
sin

x r t
y r t

ω
ω

=
=γ

 

) [, x y ]y
t t

ω∂ ∂
= + = − +

∂ ∂
i j iy xi      

     

 

 

 

ectrostatic field 

 ˆ ˆ0
S

l s∂ = = ∇× ∂∫t n Ei i

0 for an electrostatic field∇× =E
velocity field 2ω∇× =V k  
     E cannot be an electrostatic field 0≠E

 
agos, 2008 
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The gradient 
 
Suppose    ( ), , x x zx y z F F F= + +F i j k  
 

And            2x yF F F
x y z
φ φ φ∂ ∂ ∂

= = =
∂ ∂ ∂

 

 
Where          ( ), , is a scalarx y zφ
 

ˆ x y z
x l y l z l l
φ φ φ∂ ∂ ∂ ∂ ∂ ∂ ∂

= + + =
∂ ∂ ∂ ∂ ∂ ∂ ∂

F ti φ
 

 

ˆ x y z
l l

∂ ∂
= + +

∂ ∂
t i j k

l
∂
∂

 

 

( ) ( 0 0 0
ˆ , , , ,

C C
l l x y z x y

l
)zφ φ φ∂

∴ ∂ = ∂ = −
∂∫ ∫F ti  

 
If F and φ are related as  Depends on position of 
above then the line integral  start and finish not path 
 is independent of path. 
 

x y z
φ φ

⎡ ⎤∂ ∂ ∂
= ∇ = + +⎢ ⎥∂ ∂ ∂⎣ ⎦

F i j k  

Ade Ogunsola 
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ELECTROSTATICS IN A VACUUM 
 
 
 
COULOMBS LAW 
 

 

û

q1

FORCE AT q1 q q ⎡ ⎤
Ade Ogunsola 

         q0   

10 1
2

00

ˆ
DUE TO q4 rrπε

= ⎢ ⎥
⎣ ⎦

F u

 
 
ELECTRIC FIELD STRENGTH 
 

11

01

FIELD AT
Vm

DUE TO
q

qq
− ⎡ ⎤

⎡ ⎤= ⎢ ⎥⎣ ⎦
⎣ ⎦

FE  

 
 
E    lines  start on +ve  charge 

       end on  −ve charge 

 
Electrostatic field E is conservative 
 

0
l

d =∫ E li    No work done around a closed path  ˆd dl⎡ ⎤=⎣ ⎦l t  

                        
Stokes theorem   [ ]ˆ

l S
d d d= ∇× =∫ ∫E l E S S ni i dS

⇒∇× = ⇒ =E E

 

Surface bounded 
by path 

 
 
 
 

 0 V− ∇ Ensures that lines of E start 
on  +ve charge  

 
 
V = Electric scalar potential [V m-1] 
 

V VV V
x y z

∂ ∂ ∂
∇ = + +

∂ ∂ ∂
i j k  
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ABSOLUTE POTENTIAL 
 

A

AV
∞

= − ∫ E i dl       External work done per unit (+ve) charge to move unit test charge from 

infinity to the point A. 
 
 
POTENTIAL DIFFERENCE 
 

B

BA B A A
V V V d= − = − ∫ E i l    Work done per unit chare in moving unit test charge from A →B. 

 
 
CHARGE DISTRIBUTION 
 

a) Point charge Q               2
0

ˆ
4

Q
rπε

=
rE  

 
 

Source (x′, y′, z′) 

Field at point  
P (x, y, z) 

Q 

 
 

( ) ( ) ( )x x y y z′ ′= − + − + −r i j k z′  
 

( ) ( ) ( )2 2 2r x x y y z z′ ′ ′= − + − + −

 
 
 
b) Volume charge distribution Cmρ⎡⎣
 

Field at point P 
(x, y, z) 

 ρ(x′, y′, z′ ) 

Volume v 

dv 

University of Lagos, 2008 
r Q
04
V d

rπε∞
= − =∫ E ri  

ˆ
r

=
rr

 

 -3 ⎤⎦

 
 
 
                  2v v

0

v
0

ˆ1 v v
4 r

1 v v
4

d Q d

OR
dV dQ d
r

E = ρ ρ
πε

ρ ρ
πε

=

= =

∫ ∫

∫

r
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c) Surface charge distribution  -2Cmσ⎡ ⎤⎣ ⎦
 
 dS Field at point P 

(x,y,z)  

Charge density 
σ(x′,y′,z′) [abr. σ] 

Surface S  

ˆ1 dSσr

 
 
 
 
Gauss’s law: Laplace’s and Poisson’s equations
 
 

Have seen 2
0

ˆ
4

Q
rπε

=
rE       [in vacuum] 

 

  4S

Qd
πε

=∫ ∫E Si

  
 

2ˆ sind r dθ θ=S r
 
 

22

20 0
0

sin
4S

Q rd
r

π π

φ θ

θ
πε= =

=∫ ∫ ∫E Si

 

0

2 2
4S

Qd π
πε

= × ×∫ E Si  

 
 

v
0 0

1 v
S

Qd dρ
ε ε

= =∫ ∫E Si

Choose a simple
surface
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

University of Lagos, 2008 
2
0

0

4

1
4

S S

S

Q d
r

OR
dSV d
r

S

Q dS

σ
πε

σ σ
πε

= =

= =

∫ ∫

∫

E

 in vacuum 

2
0

ˆ
d

r
r Si

 

dφ  

( )ˆ ˆd dθ φ r ri  
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Gauss’ Theorem v v
0

1v v
S

d d dρ
ε

= ∇ =∫ ∫ ∫E S Ei i  

 
 

∴  
0

ρ
ε

∇ =Ei   Differential form of Gauss’ Law in vacuum 

 
 

0

  but = - Vρ
ε

∇ = ∇E Ei  ( ) 2V V⇒∇ =∇ −∇ = −∇Ei i  

 
 

   
2

0

V ρ
ε

⇒ ∇   Poisson’s equation = −

0=

 
 
 

If     Laplace’s equation 
20 Vρ = ∇

 
 
 
 

v
0

1 v
4

dV
r

ρ
πε

= ∫One solution is  
 
 
But to this we must add all possible solutions of homogeneous equations that are consistent with 
the boundary conditions (symmetry) of the problem. 

University of Lagos, 2008 
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EXAMPLE EXAM STYLE QUESTION 
 
A perfectly conducting sphere is placed in a previously uniform electric field pointing in the z- direction.  
The sphere is uncharged and has a radius a. 
 

i) How is the electric field changed? 
 

ii) What is the surface density on the sphere? 
 
iii) What is the induced dipole moment of the sphere? (Would not get this last bit in exam!) 

 
 
 
THINK ABOUT THE SYMMETRY OF THE PROBLEM! 
 
Sphere  ⇒ We should work in spherical polar coordinates. 
 
 

1 1ˆˆ ˆ
sin

V VV
r r r

V
θ θ φ

∂ ∂ ∂
∇ = + +

∂ ∂ ∂
r θ φ  

 
  

θ 

φ 

x 

∂r
r̂

rsinθ∂φ 

r∂θ θ̂

φ̂

y

z 

∂θ 

∂φ 

We are told that  E  in Cartesian 
coordinates 

0 ˆE= z

 
 
 
How to write this in Spherical Polar 
Coordinates? 
 
 
 
 
 
 
 
 

θ̂
θ̂  

 

(-E0sinθ) 

(E0 cosθ)r̂  

θ 

θ 

r̂

0ˆE z 
 
 
 

( ) ( ) ( )0 0
ˆˆ, , cos sinr E Eθ φ θ= −E r θθ

Now since E  V=−∇

( ) 0, , cosV r E rθ φ θ⇒ = −  

University of Lagos, 2008 
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Now we put sphere into field ⇒ field is perturbed  
 
Potential must be a solution of  2 0V∇ =
 

Try  0 2

coscos AV E r
r

θθ= − +  with origin at centre of sphere. 

 
N.B.  All terms must have same θ  dependence to match at boundary. 
 
When  must get back to uniform E i.e. r →∞ 2

1 0r →  

 
In spherical polar coordinates 
 

2
2 2

2 2 2 2

1 1 1sin
sin sin

V VV r
r r r r r

θ 2

V
θ θ θ θ

∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞∇ = + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ φ
 

 

Check and find ( ) 0 2

cos, , cos AV r E r
r

θθ φ = − +  is a solution of 2 0V∇ =

V r θ φ≤

r E r

 

 
N.B.  : Charge on a conductor resides on its surface 

         : Every point on or in a perfect conductor has the same potential. 

         : If V = constant     E =  i.e. within conductor E = 0 0V−∇ =

 
Initially sphere uncharged ⇒ V = 0, no net charge on conductor when moved into field ⇒ 
 
 
For    r a          ( ), , 0=
 
 
For    r V ( ) 0, , cosθ φ θ→ ∞ →−        

1 

2 

Boundary condition 

 
 
Use BC  (1) at  3

00r a V A E a= = ⇒ =
 
       BC  (2) 0 cosr V E r θ→∞ →−  
 
 

∴  For ( )
3

0
0 2, , cos cosE ar a V r E r

r
θ φ θ> = − + θ      3 

 

( ) ( )
3 3

0 0
0 0 3 3

2 cos sinˆ ˆˆ ˆcos sin E a E aV E E
r r

θ θθ θ
⎛ ⎞ ⎛

= −∇ = − + +⎜ ⎟ ⎜
⎝ ⎠ ⎝

E r θ r θ
⎞
⎟
⎠
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( ) ( )0

As
ˆ3 cos

From
r a Lim

E
r a r a

θ
→ ⎛ ⎞

= ⎜ ⎟> →⎝ ⎠
E r  

 
 
Gauss’ Law    
 

( )

0
2

0
0

ˆ

sin

3 cos

S

S S

Qd d dS

dS r d d
dSE dS

ε
θ θ φ

σθ
ε

= =

=

=

∫

∫ ∫

E S S ri

 

 

                        0 03 cosEσ ε θ⇒ =  
 
 
 
Induced Dipole Moment  (see next section for why!) 3

0 04p aπε= E

University of Lagos, 2008 
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MAde 

POINT DIPOLE 
 

Potential from a dipole:  2
0

cos
4p
pV

r
θ

πε
=  

 +Q 

-Q 

δz 

 

Where  p Q zδ= =p   

∴ Second term in equation corresponds to 
the contribution of a dipole with:  

3
0 04p a Eπε=  

3

 Er 

Eθ 

θ 
δz 

+ 

− 

 p 

 
( )

( )
( )

0 1

0 1

0 1

0

4

4

Now as  

4

p

p

p

p

z r

V

QV
r r

Q zV

Q zV

0 2

2 1

2

2

2 1 2

1 2

2

4 4

2 cos

,

cos

Q Q
r r

r r

r z
r r r r

r z
r r r

r

δ

πε

πε

πε

θ δ

δ

δ θ

−

′ −
+

→ →

δ
πε

θ θ

πε

= −

=

=

′

∴ =

 
 

θ

r 

r1 

r2

θ′ 

δz 

 
 
 

 

( )2 2 2 cosr r z zrδ δ θ ′= + −

Univer

Ogunsola 

0

1
4pV 2

cos
r

θ
πε

=
p

  
 
 

 
 

( )
( )

1 2 2

2
2

1 2
1 2

2 cosz zr
r r

r r
δ δ θ ′−

− =
+

 

 

( )3
0 0

1 1 1
4 4pV rrπε πε

⎛ ⎞= = −⎜ ⎟
⎝ ⎠

p r pi i∇  

 
V= −∇E  in spherical polar coordinates 0

ˆˆ ˆrE E Eφ= + +E r θ φ  
 

3
0

2 cos
4r

V pE
r r

θ
πε

∂
= − =

∂
 3

0

1 si
4

V pE
r rθ

nθ
θ πε
∂

= − =
∂

  
1 0

sin
VE

rφ θ φ
∂

= − =
∂
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THE ELECTROSTATIC PROPERTIES OF DIELECTRIC MATERIALS 

 

IDEAL DIELECTRIC – contains no free charge (perfect insulator) 

In practice all material media contain some free charges and therefore have 

finite conductivity. 

DIELECTRIC ⇒ very low electrical conductivity 

 

 

CLASS 1 DIELECTRIC 

Non-Polar media composed of neutral atoms/molecules that have no electric 

dipole moment in the absence of an applied field. 

 

When an E field is applied the electronic orbitals are perturbed. Negative 

electrons are displaced in a direction opposite to that of the field and positive 

nuclei tend to move in the same direction as E. ⇒ centre of negative charge 

displaced from centre of positive charge. 

 
Examples: 

  Relative Permittivity Conductivity  

He  εr =1.000071  <10-15 Ω-1m-1 

CH4  εr =1.00098   <10-15 Ω-1m-1 

Teflon εr =2.0   <10-15 Ω-1m-1 

Ade Ogunsola  
University of Lagos, 2008 
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CLASS II DIELECTRIC 

 

Polar dielectric composed of molecules or ion pair that have a permanent 

electric dipole moment. 

 

Examples: H2O  εr ≈ 80  @ low frequency and T>273K 

  KCl  εr ≈ 5.0  @ low frequency and T=273K 

  NH3  εr ≈ 1.008  @ T=273K and 105 Pa 

 

Consider a gas of polar molecules with each molecule having a Dipole Moment 

pm. In the absence of an electric field the directions of these dipoles are 

randomised by thermal energy. When E applied dipoles tend to align parallel to 

E. The Tendency to align is disturbed by thermal motion. Since kBT >> pm.E 

(pm.E – electrostatic energy of a dipole). The net moment of a volume of gas is 

much smaller than it would be if all dipoles were aligned. 

 

When E applied to a Polar Gas also get induced (type 1) dipole moments. 

 

The Electric Field “seen” by each dipole is a combination of the applied field 

and that due to the other dipoles. 
− 

− 

− 
− 

− 
− 

+ 
+ 

+ 

+ 
+ 

+ 
−

− 

− 

− 
− 

− 
− 

+ 
+ 

+ 

+ + 
+ 

+
 

 

 
pm pi pi 

 

Note get induced dipole even in the absence of applied field. Electrons around 

one ion see field from charge on other ion. 

 

Ade Ogunsola  
University of Lagos, 2008 
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SOLIDS AND LIQUIDS 

 

TYPE 1 DIELECTRIC – Simple approach works OK 

 

TYPE 2 DIELECTRIC – Complicated 

 

E.G.  H2O  εr ≈ 80  for water at T ≥ 273K 

  H2O  εr ≈ 3   for ice 

 

In ice permanent dipoles cannot re-orientate! 

 

In ionic solids small displacement of positive and negative ions caused by E 

gives rise to large electric polarisation and εr – see solid-state physics… 

 

 

DIELECTRIC BREAKDOWN 

 

In E field the few free electric charges in a dielectric are accelerated – if the 

field large enough then when these electrons collide with atoms (or ions) they 

produce secondary electrons that are themselves accelerated by E. 

 

⇒ AVALANCHE EFFECT – currents flows (in streamers) Dielectric is heated 

and can be permanently damaged. 

 

Field required for this effect – BREAKDOWN FIELD – typically 106 Vm-1

 

If dielectric thin (say in a commercial capacitor) a few volts can cause 

breakdown. 

Ade Ogunsola  
University of Lagos, 2008 
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DIELECTRIC POLARISATION (P) AND ELECTRIC SUSCEPTIBILITY (χ). 

 

For both Class 1 and Class 2 Dielectrics, applied electric field INDUCES an 

electric dipole moment in each elementary volume of the material. Induced 

Dipole moment originates from POLARISATION CHARGES – bound to the 

nuclei and not able to move as free charges. 

 

Macroscopic measure of the induced-dipole effect is the ELECTRICAL 

POLARISATION P. 

 

P = Induced electric dipole moment / unit volume [ Cm-2] 

 

 

Usually we write EP χε0=   

 

Not always the whole truth! Assumes that  P depends linearly on E. 

       χ homogeneous 

       P parallel to E. 
 

P IS RELATED TO SURFACE AND BULK POLARISATION CHARGE 

 

When a dielectric acquires an Electric Polarisation P (by virtue of an internal 

field E ). 

 

(a) A distribution of polarisation charges appears on the surface –surface 

polarisation charge density nP ˆ•=pσ  [Cm-2]. n̂  is outwardly 

directed unit vector normal to the surface. 

Ade Ogunsola  
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(b) A distribution of polarisation charges appears throughout its volume – 

volume polarisation charge density P•−∇=pρ [Cm-3]. 

 

(a)  Surface distribution 

n̂(i) E applied at angle θ  to normal to surface  

∴P at angle θ  to n  ˆ

∆(ii) Assume polarisation charge + on the top PQ

S∆  and PQ∆−  on the bottom S∆ . 

∴Dipole moment for our volume element = θcosPv SlPQl P ∆∆=∆=∆∆  

∴ PS
QP σθ =
∆
∆

=•= nP ˆcos  

⇒ nP ˆ•=Pσ  

 

(b) Volume distribution 

Consider a small-uncharged volume v∆ , and electric field is applied and the 

material becomes polarised. 

Total polarisation charge on surface = ∫∫∫ •• == SSS p ddSdS SPnP ˆσ  

As ∆ was initially uncharged v

 

E 
∆v 

σP

−
ρP

P 

−−

+ 
+ 

+ 

0v =∆+∫ • PS d ρSP  or ∫ •
∆

−= SP d SP
v

1ρ  

 

⇒ P•−∇=Pρ  

Ade Ogunsola  
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ELECTRIC DISPLACEMENT D  

In free space fρε =∇ • E0  where fρ  is the free charge density. 

If a field E exists in a material medium, the material becomes polarised and 

polarisation charges are induced with a charge density Pρ . 

Now must modify our equation by including Pρ so that Pf ρρε +=∇ • E0  (we 

note that E can begin and end on free and bound charges). 

Using P•−∇=Pρ  ⇒ ( ) fρε =+∇ • PE0  

We define PED += 0ε  ⇒ fρ=∇ •D  

=D  ELECTRICAL DISPLACEMENT [Cm-2] 

LINES OF D  CAN ONLY BEGIN AND END ON FREE CHARGES 

PED += 0ε  and EP χε0= (for linear, homogeneous and isotropic media) 

⇒ ( ) EEED εεεχε ==+= r00 1   

( )χε += 1r = RELATIVE PERMITTIVITY [Dimensionless] 

ε = ABSOLUTE PERMITTIVITY [Fm-1] 

 

 

GENERAL FORM OF GAUSS’ LAW 

 

Pf ρρε +=∇ • E0  ( )∫∫∫ +==∇ •• v0v 0 dvddv PfS ρρεε SEE  

fρ=∇ •D    ∫∫∫ ==∇ •• vv dvddv fS ρSDD  

GENERAL STATEMENT OF GAUSS’ LAW ∫∫ =• v dvd fS ρSD  

WE STILL HAVE V−∇=E  BUT POISSON’S EQUATION BECOMES 

( )
0

2
ε
ρρ PfV

+
−=∇  

Ade Ogunsola  
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FIELDS NEAR A CHARGED CONDUCTOR 

 

Lines of D and E  are normal to the surface close to the surface (we have seen 

this before and will see it again with boundary conditions).  

Gauss’s Law fS S
d σ• =∫ ∫D S dS  since all free charge on surface. 

Just above surface SSD fn ∆=∆ σ and fnD σ= and 
0ε

σ f
nE =  

0=nE  in conductor since potential everywhere in conductor is the same –

uniform potential. 

 

EXAMPLES CONCERNING POLARISATION CHARGES 

(a) Relation between Pρ  and fρ for a simple linear, homogeneous medium ⇒ 

=rε constant 

PED += 0ε  and ED rεε0=  

∴ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=−=

r

r

r ε
ε

εε
ε 1

0

0 DDDP  

⇒ DP •• ∇⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=∇

r

r
ε

ε 1
 and since fρ=∇ •D and P•−∇=Pρ  then 

f
r

r
P ρ

ε
ε

ρ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−=

1
. So if 0=fρ  then 0=Pρ  ⇒ only a surface charge 

distribution Pσ  exists on polarised medium. 
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EFFECTIVE CHARGE DENSITY 

Pf ρρε +=∇ • E0  so in linear homogeneous medium f
r

r
P ρ

ε
ε

ρ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−=

1
 then 

r

f

ε
ρ

ε =∇ • E0 .     
r

f

ε
ρ

is called the effective charge density. 

∴If a point charge Q is placed in an dielectric medium the effective charge is 

r

Q
ε

 which is less than Q since .1>rε  Physical Reason: On the surface of the 

dielectric adjacent to the point charge Q there is a surface distribution of 

polarisation charge of the opposite sign to Q – reducing the effective charge 

(see the problem sheet). 

Ade Ogunsola  
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BOUNDARY CONDITIONS IN ELECTROSTATICS 
 
☺ THE NORMAL COMPONENT OF D  IS CONTINUOUS ACROSS 

A BOUNDARY PROVIDED THAT NO FREE CHARGE IS 
PRESENT ON THE BOUNDARY. 

 
☺ THE TANGENTIAL COMPONENT OF E  IS CONTINUOUS 

ACROSS A BOUNDARY. 
 
☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺ 

ANY SOLUTION TO AN ELECTROSTATICS PROBLEM MUST 
SATISFY THE BOUNDARY CONDITIONS. 

☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺ 
 
 
THE NORMAL COMPONENT OF D  
 

Assume that the free surface charge 
density is fσ [Cm-2] on the interface 
between region 1 (

D1 

Region 1 
εr1

∆S D2 

Region 2 
εr2

∆x

∆S 

) and region 2 (1ε 2ε ). 
In region 1 the electric displacement 
( 1D ) make an angle of 1θ  with the 
normal to the interface, and in region 2 

2D  makes an angle of 2θ  with the 
normal to the interface. Therefore the 
magnitudes of the components of 
D normal to the interface are 

111 cosθDD n =  and 222 cosθDD n = . 
 

If we apply Gauss’s Law to the little “pill box” and let the width of the box 
0→∆x  then 

SSDSD fnn

fS

∆=∆−∆

= ∫∫ •

σ

σ

12

S dd SSD
 

∴ fnn DD σ=− 12  but if 0=fσ  then  

nn DD 12 =  
and because ED rεε0=  then there is a “jump” in the normal component of 
the electric field at the boundary. 

nn EE 1122 εε =  

Ade Ogunsola 
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THE TANGENTIAL COMPONENT OF E  
 

1EIn region 1 the electric field ( ) 
makes an angle of 1θ  with the normal 
to the interface, and in region 2 2E  
makes an angle of 2θ  with the normal 
to the interface. Therefore the 
magnitudes of the components of 
E tangential to the interface are 

111 sinθEE t =  and 222 sinθEE t = . 
 
The line integral of E around any 

closed path in an electrostatic field is zero 0=∫ •l d lE   

E2 

E1 

Region 1 
εr1

∆l

∆x

Region 2 
εr2

So as 0→∆x  012 =∆−∆=∫ • lElEd ttl
lE  

∴     tt EE 12 =   
(The tangential component of E is continuous across a boundary) 
Because ED rεε0=   
 

 
1

1

2

2
εε

tt DD
=

Note 0=E  in a perfect conductor ⇒ 0=tE  on surface and the only non-
zero component is normal to the surface. 
 
 
REFRACTION OF LINES OF D  AND E . 
 
Boundary conditions: 

tt EE 21 =  or 2211 sinsin θθ EE =  
and 

nn DD 12 = or 2211 coscos θθ DD =  
 

So  2
2

2
1

1

1 cotcot θθ
E
D

E
D

=  and since ED rεε0=  we find that 

 
2211 cotcot θεθε =  : Refraction formula for field lines. 

 
 

Ade Ogunsola 
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DIELECTRIC SPHERE IN A UNIFORM FIELD. 
 

 

ε1 

R

Sphere ⇒ work in spherical polar 
coordinates ( )φθ ,,r , but remember 
that there will be no variation with 
respect to φ . 

ε2 

 
 
 E0k  
 

 
Boundary Conditions:  
 
Normal component of D  is continuous: rr DD 12 = ⇒ rr EE 1122 εε =  
(  : is the radial component of rD D ) 
 
Tangential component of E  is continuous: θθ 12 EE =  
(  : is the component of θE E  tangential to the surface of the sphere) 
 

Try the potentials θθ coscos 202 r
ArEV +−=  and θθ coscos 2

2
11 r

B
rBV +=  

 
But as 0→r  in region 1 ∞→1V  which means that 02 =B  
 
So  θcos11 rBV =  

and  θθ coscos 202 r
ArEV +−=  

 
Also V must be continuous at the boundary (any discontinuity ⇒ infinite 
electric field!) 
 

∴ RB
R
ARE 120 =+−   or  301 R

AEB +−=  

 
Normal components of E  at interface are 
 

Ade Ogunsola 
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θcos1
1

1 B
r

V
E

Rr
r −=⎥

⎦

⎤
⎢
⎣

⎡
∂
∂

−=
=

 θθ cos2cos 30
2

2 R
AE

r
V

E
Rr

r +=⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

−=
=

 

 
We know rr EE 1122 εε =  so 
 

3
2

0211
2
R

A
EB

ε
εε +=−  or ⎥⎦

⎤
⎢⎣
⎡ +−= 30

1

2
1

2
R

AEB
ε
ε

 

So 3030
1

2 2
R
AE

R
AE +−=⎥⎦
⎤

⎢⎣
⎡ +−

ε
ε

  

so 
( )
( ) 0

3

21

21
2

ERA
εε
εε

+
−

=   and ( ) 0
21

2
1 2

3
EB

εε
ε

+
−

=  

 

( ) θ
εε
ε

cos
2

3
0

21

2
1 rEV

+
−

=  and 
( )
( ) θ

εε
εε

cos
2

1 03

3

21

21
2 rE

r
RV ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
−

−−=  

 
Hence at Rr =  

( )
( )
( ) kEkEkE ˆ

2
ˆˆ

2
3

0
21

12
00

21

2
1 εε

εε
εε

ε
+
−

+=
+

=E   

 
Consider Dielectric sphere in vacuum 02 εε =  and rεεε 01 =  
 

∴
( )
( ) kEkE

r

r ˆ
2

1ˆ
001 +

−
+=
ε

ε
E   

 
but  ( ) kEP r

ˆ1 101 −= εε  
 

( )
( ) kEP

r

r ˆ
2

13
0

0
1 +

−
=

ε
εε

 

∴   
0

1
01 3

ˆ
ε
PkE −=E  
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DIELECTRIC SPHERE 
 

 
 
 
Lines of electric displacement D  due to a dielectric sphere of relative 
permittivity 1ε in a uniform electric field in a medium of relative permittivity 

2ε . 
 
 
CONDUCTING SPHERE 
 

 
 
Lines of Electric Field near a conducting sphere in a uniform electric field. 
 
 
See http://www.electrostatics3d.com/
 

Ade Ogunsola 
University of Lagos, 2008 
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CAPACITANCE 
 
To calculate the capacitance of any given arrangement we must calculate the 
P.D. between the conductors for an assumed charge. 
 
METHOD 
 

1. Assume charge  on either conductor Q±
 
2. Use GAUSS’ LAW to find D  in the space between the conductors. 

 
3. Calculate E  at each point in space using ED rεε0= . 
 
4. Find the P.D. between the conductors from ∫ •−= l dV lE  along any 

path joining the conductors. 
 

5. V
QC = . 

 
EXAMPLE 1. A PARALLEL PLATE CAPACITOR. 
 
 

D

+σ
−σP 

+σP 

−σ

DPE2 

E1 

E1 

 
 z=d

 
 
 
 
 
 z=0

 
 
A P.D. is applied and a charge appears on each plate AQ σ±= ( =σ  surface free 
charge density, A= area of plates). 
Note there are three regions 1 and 3 are gaps between plates and dielectric 
where 1≈rε  and region 2 in the dielectric rε  is a function of position. But by 
integrating over one of the metal plates and using Gauss’ Law we find that 
 

∫∫ =• SS dSd σSD  and hence zD ˆσ−=  

 

Ade Ogunsola 
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Normal component of D  is continuous at each boundary ∴ D  has the same 
value in all regions. Note we are ignoring the Fringing Fields i.e. assuming that 
linear dimensions of the plates are large compared with their separation. 
 

In regions 1 and 3 1=rε  so 
0 0

ẑσ
ε ε

= = −
DE  

 

In region 2 
0 0

ˆ
r r

zσ
ε ε ε ε

= = −
DE  

 

Now ( )0 0
0

ˆ
z d z d

l z z
r

dzV d zdz
z

σ
ε ε

= =
• •

= =
= − = − =∫ ∫ ∫E l E  

 

So 

( )∫
=

=

= dz

z r z
dz

V

0

0

ε

ε
σ  and 

( )∫
=

=

= dz

z r z
dz

VA
Q

0

0

ε

ε
 

 

Since V
QC =  we see that 

( )∫
=

=

= dz

z r z
dz

A
C

0

0

ε

ε
 

 
Now if the dielectric is homogeneous, and fills the space between the plates 
(totally) ⇒ =rε constant and 

d
A

C r
0εε=  

 
Remember that PED += 0ε  and ED rεε0=  so we could calculate  
 
P   
 

E
P

0ε
χ =   

 
P•−∇=Pρ  (= 0 for homogeneous dielectric) 

 
nP ˆ•=Pσ  

Ade Ogunsola 
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Example 2. The cylindrical capacitor (cylindrical symmetry). 
 

 

b a 
+Q Space between metal cylinders is filled with 

an ideal dielectric material with relative 
permittivity rε . 

d  
Construct an imaginary cylinder between the 
two metal coaxial cylinders and use Gauss’ 
Law. 

−Q 

 
 
 

2rS S
d D rd dSπ σ= × = =∫ ∫D Si Q  so ˆ ˆ

2r
QD
rdπ

= =D r  for r bra  <<

 

0 0

ˆ
2r r

Q
rdε ε πε ε

= =
DE r  

 

0 0

1ˆ ˆ ˆ ln
2 2

r b r b

r a r a
r r

Q QV dr dr
d r d aπε ε πε ε

= =

= =

⎛ ⎞= − = = − ⎜ ⎟
⎝ ⎠∫ ∫E r r ri i b

 

 

Since V
QC  we see that =

⎟
⎠
⎞

⎜
⎝
⎛

=

a
b

d
C r

ln

2 0εεπ
 

 
INTERNAL ENERGY OF A CHARGED CAPACITOR. 
 
When a capacitor is charged the source of P.D. does work to separate the 
charges Q on the two conductors. This external work done by the source may be 
considered to reside in the field of the capacitor as potential energy. 
Consider a capacitor being charged, at time t the charge on the capacitor is q. 
Work done by the source to increase dqqq +→  requires work to be done 

. Since VdqdW = CVq = then 
C

qdqdW =  so that the W.D. to increase charge 

from  is Q→0
 

222
..

22

0

CVQV
C

Q
C

qdqDW
Qq

q
==== ∫

=

=
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ENERGY DENSITY OF AN ELECTROSTATIC FIELD 
 

Construct an imaginary surface by 
placing conducting plates of area S∆  
on the equipotential surfaces 
separated by x∆ . (As a conductor is 
an equipotential surface the presence 
of such plates would not disturb the 
field in any way). 

∆S 

∆x 

E 

 V+∆V V 
 

x
S

C r
∆
∆

=∆ 0εε
 

( ) ( )
2

0
202

2
1

2
1

2
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∆
∆

∆∆=∆
∆
∆

=∆∆=∆
x
VxSV

x
S

VCW r
r εε
εε

 

xE ˆ
dx
dV

−=  so as 0→∆x  we see that 2
02

1 ExSW r ∆∆=∆ εε  

 
=∆=∆∆ vxS Volume occupied by the field in the virtual capacitor. 

 
∴ Energy Density per unit volume  
 

EDEE •• ===
2
1

2
1

2
1

0
2

0 εεεε rr EU  

 
∴ Total Energy of an Electrostatic Field Occupying a volume V is  
 

v
2
1

v
dW ∫ •= ED  

 
Note that 0dU d d dε• •= = +E D E E E P•  where 0 dε •E E is the change in energy in 
the absence of the dielectric and d•E P  is the work done in polarizing the 
dielectric. 
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ELECTROSTATIC FORCES 
 
Lines of an electric field tend to contract in a direction along the field line and 
to exert a sideways pressure normal to the field line ⇒ field lines will thus exert 
forces on their sources i.e. on the charges which give rise to them. 

 FExt

− Q 

+Q An external force ExtF  must be applied to the plate of a 
capacitor (assuming the other plate is fixed), to stop 
them moving together since W−∇=IntF  then 

ExtInt FF −=  in equilibrium 

 x 

 

A
xQ

C
QW

0

22

22 ε
==  since 

x
A

C 0ε=  

 

xxxxxF ˆ
2

ˆ
2

ˆ
2

ˆ
2

ˆ
2

0
2

2
0

0

22

0

2 AE
x
AV

A
VC

A
Q

x
W

Ext
εε

εε
====

∂
∂

=  

 
Field within the capacitor exerts an internal force on the plates (= and opposite 
to ExtF ) pulling the plates together. This force would compress any dielectric 
present and may be large enough to break the dielectric. 
 
Note:  
1. 2E∝F  i.e. independent of direction of E . 

2. For =Q constant from equation 
C

QW  principle of minimization of 

energy ⇒ Internal forces will always act to increase capacitance. 
2

2
=
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DIELECTRIC PARTIALLY INSERTED BETWEEN CONDUCTING 
PLATES 

 
l  

 

− Q 

+Q 

l 
 x  
 
 
 
 
 y 
 

( ) ( )[ ]yl
x
l

x
ly

x
lyl

C r
r 1000 −+=+

−
= ε

εεεε
 

 

( )[ ]yll
xQ

C
QW

r 122 0

22

−+
==

εε
 

 

( )[ ] xF ˆ
12 0

2

yll
Q

x
W

r
x −+

−=
∂
∂

−=
εε

 

 
( )

( )[ ]
yF ˆ

12
1

2
0

2

yll
xQ

y
W

r

r
y

−+

−
=

∂
∂

−=
εε

ε
 

 
So the dielectric is pulled into the gap between the plates, as well as the plates 
being pulled together. 
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MAGNETIC EFFECTS OF CURRENTS AND MAGNETOSTATICS 
 
MAGNETIC EFFECTS OF CURRENTS 
 
 
Ampere, Oested, Biot, Savart…. 
 

• Two long parallel wires carrying currents in opposite directions repel one 
another where as when the currents are in the same direction they attract 
one another. 

 
• If a wire carrying a current is placed near a magnet it experiences a force. 

 
 
Current produces a magnetic field! 
 
Introduce B  - MAGNETIC FLUX DENSITY [TESLA] 
 
The force exerted on an element of wire 1ld  carrying a current  at a place 
where the magnetic flux density 

1I
B  can be expressed as 

 
( )BlF ×= 11 dId       (1) 

 

 
The force exerted on an element of wire 1ld  carrying a current  due to another 
element 

1I
2ld  carrying a current  can be expressed as 2I

(( rllF ××= 213
210

1 4
dd

r
IId

π
))µ      (2) 
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If we compare (1) and (2) we may say that the current  in the element 2I 2ld  
produces a magnetic flux density Bd  at a distance r  where 
 

( rlB ×= 23
20

4
d

r
Id

π
)µ      (3) 

 
7

0 104 −×= πµ  NA-2. 
 
Can use (3) to calculate B  since 
 

( )
3

0

4 r
dI

l

rlB ×
= ∫π
µ  

 
Example 1. B produced by a long straight wire carrying a current I . 
 

 
Magnetic Flux at point P due to element zd is 

3
0 sind

4 r
rzId P

θ
π
µ

=B   

[Directed into the page] 
 

φφφ

φθφ

cosdsecd

cossintan
2 rRRz

Rz

==

==
 

Therefore 2

22
0 cosdRseccos

4 R
Id P

φφφφ
π
µ

=B  

 

R
II

P π
µφφ

π
µ π

π 2
dcos

4
02

2

0 == ∫
+

−
B  

 

Ade Ogunsola 
University of Lagos, 2008 
 



Electromagnetic Theory       Page 3 Lecture 6 

Example 2. B  along the axis of a current loop I . 
 

rl ⊥dI . Therefore 

2
0 d

4
d

r
lI

π
µ

=B  

 
Must sum results from a
whole loop – each compone
contributes 

round 
nt 

φdBsind =B
 and the ⊥  

components cancel. 
 

 
along the axis

a
r

Il
r

I
r

lI
ll

π
π

φµ
π

φµφ
π

µ 2
4

sind
4

sindsin
4 2

0
2

0
2

0 === ∫∫B  

 

( )
( ) 2

122

2
122

sin bar
ba

a
+=

+
=φ    

 

( ) 2
322

2
0

2 ba

aI

+
=
µB  So 

When  then ab >> ( ) 3
0

3
0

3

2
0

222 r
mAI

rr
aI

π
µ

π
µπ

π
µ

===B  

 
A =  Area of loop and the magnetic dipole moment IAm = [Am2] 
AM

mpere noted that the magnetic field configuration produced by a small loop of 

onvention

PERES MAGNETIC DIPOLE 
 
A
current is identical to that produced by a small permanent magnet 
 

 I  circumscribes the vector Sd  in a right hand sense and Sm dI=  C

 
 

rigin of all magnetism is electrical currents. Ampere proposed that permanent O
magnetism was the result of ‘Atomic currents’ i.e. electrical currents flowing at 
the atomic level. 
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Note H  in diagram not B  we will shortly find out how H  is related to B  
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MAGNETIC EFFECT OF A CURRENT LOOP OF ANY SIZE 
 

Can subdivide large circuit into a network of small 
circuits in each of which a current I  circulates. In 
the interior the current in adjacent loops cancel ⇒ 
Left with current flowing around periphery. 
 
 
 

 
 
AMPERES CIRCUITAL LAW IN VACUUM 
 

Have shown that for a long wire carrying a current I  at a distance r , 
R
I

π
µ
2

0=B  

and that the lines of B  are concentric around the wire. 
 
If we perform a line integral ∫ • lB d  on a closed path l  which forms a circular 

loop (radius r ) around the wire we get 
 

Ir
r
I

r
I

0
00 2

2
dl

2
d µπ

π
µ

π
µ

=== ∫∫ • lB  

 
i.e. I0d µ=∫ • lB  

 
This works for any path! Why? 
 
Because any given closed path around the conductor is approximated by 
segments that are either radial or circular arcs about the conductor. The 
contribution of radial segments to ∫ • lB d  is zero since everywhere B   to the 

radius vector ∴ 

⊥

∫ • lB d  is the value over only the circular segments. 

 
In fact for any current threading the area enclosed by a chosen path  

 
I0d µ=∫ • lB  
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B  AND H  
 
In a vacuum HB 0µ=  
 
=B  Magnetic flux density of the magnetic induction [Tesla=NA-1m-1] 

 
=H  Magnetic Field [Am-1] 

 
7

0 104 −×= πµ  [NA-2 = Tesla A-1m-1] and is called the PERMEABILITY OF 
FREE SPACE. 
 
In vacuum  
 

HB 0µ=  ⇒  I=∫ • lH d       (A) 

   Amperes Circuital Law 
 

and    ( )
34 r

dI
l π

rlH ×
= ∫      (B)  

   [ H  produced at a distance r  from I  flowing along path l ] 
 
Both (A) and (B) are true in any media. 
 
Note: since I=∫ • lH d  H  field is not conservative unless 0=I . 

 
CURRENT DENSITY AND AMPERES LAW 
 
If a path l  is drawn within a current distribution, the total current I  linked by 
the path is SJ d•∫= S

I  

 
=J Current density [Am-2] 

 
 
Since SJlH dd •• ∫∫ ==

S
I  

And Stokes Theorem states that SJSHlH ddd ••• ∫∫∫ =×∇=
SSl

 

 
⇒      JH =×∇  
Differential form of Amperes Law (only true for constant I , H and J ). 
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GAUSS, LAW IN MAGNETISM 
 
Magnetic Flux = Total lines of B  through a given area. 
 

SB d•∫=Φ
S

 

 

Remember 
0

d
ε
q

S
=∫ • SE  so in the absence of any charge 0d =∫ •

S
SE  

 
Magnetic Monopoles don’t exist – only magnetic dipoles 
 
⇒ 0d =∫ •

S
SB  always. Since Gauss’ Theorem states 

v
dv d

S
• •∇ =∫ ∫B B S  

 
0d =∫ •

S
SB  means that 0=∇ • B  always. 

 
Lines of B  always form closed paths. No sources of B . 
 
MAGNETOSTATICS ELECTROSTATICS 
No charges, no electrical fields. Steady 
currents and time independent 
magnetic field. 

B , H  and J  all zero. D  and E  time 
independent. 

 
I

l
=∫ • lH d  

 
JH =×∇  

 
0=∇ • B  

 

 
0d =∫ •

l
lE  

 
0=×∇ E  

 
fρ=∇ • D  

Only if 0=J  can we define a 
magnetic scale potential Mφ such that 
 

Mφ−∇=H  
 
Note: ( ) 0=∇−×∇=×∇ MφH  
 

 
V−∇=E  
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THE MAGNETIC PROPERTIES OF MATERIALS 
 
All magnetic materials are affected by the presence of a magnetic field. When a 
magnetic field of strength H  exists within a substance it permeates the material 
and produces “induced” magnetic dipole throughout the body of the material. 
The macroscopic measure of this effect is the “MAGNETISATION” M . 
 
M  IS THE INDUCED MAGNETIC DIPOLE MOMENT PER UNIT 
VOLUME [Am2m-3 ≡ Am-1] – same units as H . 
 
M  is the magnetic equivalent of the polarisation P  in electrostatics. 
 
For simple magnetic media which are linear ( HM ∝ ), homogeneous and 
isotropic then  

HM Mχ=  
where H  is the field strength within the medium and Mχ  is the MAGNETIC 
SUSCEPTIBILITY [Dimensionless]. 
 
[In electrostatics EP χε0=  where χ is the ELECTRIC SUSCEPTRIBILITY] 
 
At room temperature the magnetic susceptibility is typically small and 
independent of H  - BUT for FERROMAGNETIC materials Mχ  is large and 
very dependent on H . 
 
DIAMAGNETISM ( )Dχ ,  

PARAMAGNETSIM ( )Pχ ,  
and FERROMAGNETISM ( )Fχ  

 
DIAMAGNETISM 
 
DIAMAGNETIC substances are composed of atoms (or molecules) that have 
no permanent magnetic moment. The atom consists of closed shells, so that the 
magnetic moments associated with individual electron orbitals cancel out and 
the total angular momentum quantum number 0=J . 
 

It can be shown that 
e

D m

rZen

6

22
0µχ −= where  is the number of atoms per 

unit volume, 

n

Z is the number of electrons on each atom, 2r  is the average 
radius of the electron orbital and all other terms have their usual meaning. Note 
Ade Ogunsola 
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the minus sign, the “INDUCED DIPOLE MOMENT” (or induced current) 
opposes the applied magnetic flux/field, Dχ  is independent of temperature and 
small in magnitude. Typically for the noble gases (He, Ne Ar, 
Kr, Xe) with atoms m

ZD
10105 −×−≈χ

251069.2 × -3 at RTP. 
 
PARAMAGNETISM 
 
PARAMAGNETIC substances consist of atoms, ion or molecules that possess a 
permanent magnetic dipole moment. This atomic electron dipole moment arises 
from the orbital motion of the electron and the electron spin. 
 
The electron magnetic moment of a free atom can be expressed as  

Jµ BJg µ=  

where ( ) ( )
( )12

11
2
3

+
+−+

+=
JJ

LLSSgJ  is the Lande g-factor, Am241027.9 −×=Bµ
-2 

is the Bohr Magneton, and SLJ +=  is the “Effective spin” angular momentum. 
In the absence of an applied magnetic field the directions of the magnetic dipole 
moments (µ ) of the individual atoms are randomised by thermal energy and the 
net magnetic moment of a macroscopic volume is zero. When  B  is applied 
dipole tend to align themselves in the direction of the field – Magnetic 
alignment energy Bµ •−= . If TkB<<• Bµ  then the result is a small net 
alignment in the direction of the field – induced magnetic moment is in the 
same direction as the applied B  ⇒ 0>Pχ  (positive!). 
 
It the atoms/molecules/ions are sufficiently far apart that their mutual 
interactions can be neglected (i.e. gas of low concentration of paramagnetic ions 
in a diamagnetic solid) then 

 
T
C

Tk
n

B
P ==

3

2
0 µµχ      if TkB<<• Bµ  

=n  Number of atoms/molecules/ions per unit volume 
( )1222 += JJg BJµµ  

=C  Curie Constant 
Note Pχ  is positive, small and depends on temperature as T

1 . 
For solids and liquids where interactions between paramagnetic atoms/ions 
cannot be neglected 

θ
χ

−
≈

T
C

P      Only works for θ>T  

=C  Constant, =θ Weiss constant can be positive or negative. 
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FERROMAGNETSIM 
 
Ferromagnetic substances are all solid, and each is characterised by a certain 
temperature known as the CURIE POINT at which the properties change 
abruptly. 
 

• Magnetisation is not proportional to H , in certain situations a 
susceptibility of several thousand an be measured and very large 
magnetisations can be achieved. 

• The value of the magnetisation depends not only on the applied field but 
also on the previous history of the samples. 

• A sample may retain its magnetisation even in the absence of an external 
applied field – PERMANENT MAGNETS. However, it is notable that 
the very same material can also exist is a state showing little or no 
permanent magnetism. 

 
The ultimate source of magnetic moments in ferromagnetic materials turns out 
to be the magnetic moments arising from electron spin – the big difference in 
Ferromagnetics (cf. Paramagnetism) is that there are large interactions between 
spins that cause them to align parallel with each other – even at room 
temperature thermal vibrations cannot destroy the alignment. 
 

 
 
 
 
 
 
 
 
 
 

 
Initially un-magnetised samples – as H  increases M  increases and eventually 
saturates. If H  is then decreases M does not go back to zero!  
 
Ferromagnetic “Weiss” Domains 
Interaction between spins results in preferential alignment – a quantum 
cooperative phenomenon! So why aren’t a lumps of iron spontaneously 
magnetised? A magnetic field outside the material involves stored energy 
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∫ •=
v

dv
2
1 BH [J]. If the sample is “broken up” into differently oriented 

“domains” the stored energy in this field is greatly reduced. This decrease must 
be balanced against the energy stored in making domain walls. Now, look at the 
magnetisation curve. As H  increases at first nothing much happens, but then 
preferentially oriented grains start to grow rapidly at the expense of others. 
Finally the magnetisation increases slowly as the non-preferentially oriented 
domains rotate parallel to the applied field (saturation). The whole process 
requires Domain Wall motion. 

 
Hysteresis: If the applied field is now reduced M  does not follow the same 
path (hysteresis). 
The Curie Temperature ( ) . Heating a ferromagnetic material above 

causes a transition to the PARAMAGNETIC STATE, the susceptibility can 
decrease by many orders of magnitude. 

cT
cT

 
Relation between B , H , and M . 
 

( )MHB += 0µ      [Tesla] 
 

For linear media HM Mχ=   ⇒ ( )HB Mχµ += 10  
 
Or       HB rµµ0=    where Mr χµ +=1  
 

=rµ  RELATIVE PERMEABILITY [Dimensionless] 
 
SUMMARY 
DIAMAGNETIC MATERIALS: 1<<Mχ  and NEGATIVE 1≤rµ  
PARAMGNETIC MATERIALS: 1<<Mχ  and POSITIVE 1≥rµ  
FEROMAGNETIC MATERIALS: 1>>Mχ  and POSITIVE 000,1010 −≈rµ  
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BOUNDARY CONDITIONS IN MAGNETISM 
 
We will consider boundaries between linear, isotropic and homogeneous media. 
 
☺ THE TANGENTIAL COMPONENT OF H  IS CONTINUOUS 

ACROSS A BOUNDARY PROVIDED THAT THERE IS NO 
SURFACE CURRENT ON THE BOUNDARY. 

 
☺ THE NORMAL COMPONENT OF B  IS CONTINUOUS ACROSS A 

BOUNDARY. 
 
☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺ 

ANY SOLUTION TO AN MAGNETOSTATICS PROBLEM MUST 
SATISFY THE BOUNDARY CONDITIONS. 

☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺ 
 
THE TANGENTIAL COMPONENT OF H  
 

H2 

H1 

Region 1 
µr1

Region 2 
µr2

C

DA 

B 

⊗ 

⊗ 

⊗ 

⊗ 
⊗ 

⊗ 
⊗ 
⊗ 
⊗ 
⊗ 
⊗ 

⊗ 
⊗ 
⊗ 

∆x

 
⊗ : Current flowing 
along the surface 
between regions 1 and 
2 (ie. Into the page). 

 
 
 
 
 
 

∆l 
 
 
 
 
 
 
 
 
 
 
 
In region 1 the magnetic field ( 1H ) makes an angle of 1θ  with the normal to the 
interface, and in region 2 2H  makes an angle of 2θ  with the normal to the 
interface. Therefore the magnitudes of the components of H tangential to the 
interface are 111 sinθHH t =  and 222 sinθHH t = . 
 
The line integral of H around any closed path in a magnetostatic field is equal 

to the current threading the path ∫∫ •• ==
S

I SJlH dd
l

. So if we consider the 

path ABCD where AB, CD = l∆  and BC, DA = x∆ , in the limit 0→∆x  
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∫ →•
S

0SJ d  since current density is finite in everything except a perfect 
conductor. 
 

021 =∆−∆=∫ • lHlHd ttl
lH  

 
∴     021 =− tt HH   
 
then      tt HH 21 =  
(Tangential component of H is continuous across a boundary) 
 

Because HB rµµ0=    
1

1

2

2

µµ
tt BB

=  

 
i.e. The tangential component of B  is discontinuous as the boundary. 
 
(Aside: For a perfect conductor can consider a surface charge per unit length 

flowing in a vanishing thin layer at the interface, then the boundary 
condition becomes ) 

Sj
Stt jHH =− 21

 
THE NORMAL COMPONENT OF B  
 
 

Construct a Gaussian surface in the form of 
a cylinder that “straddles” the boundary. 

B1 

Region 1 
µr1

∆S B2 

Region 2 
µr2

∆x

∆S 

 
 
Make the thickness of the box 0→∆x  so 
that no lines of B  come out of the sides of 
the little Gaussian cylinder. 
 
 
 
 
 

In region 1 the electric displacement 1B  makes an angle of 1θ  with the normal 
to the interface, and in region 2 2B  makes an angle of 2θ  with the normal to the 
interface. Therefore the magnitudes of the components of B  normal to the 
interface are 111 cosθBB n =  and 222 cosθBB n = . 
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Since 0d =∫ • SB
S

 then  SBSB ∫∫ •• −=
21

dd
SS

 
 

SBSB nn ∆=∆ 12  
 

∴      nn BB 21 =
 

Because HB rµµ0=  there is a “jump” in the normal component of the magnetic 
field at the boundary. 

nn HH 1122 µµ =  
 
REFRACTION OF LINES OF B  AND H . 
 

Boundary conditions: 
0=Sj  tt HH 21 =  or  

 
0=Sj 2211 sinsin θθ HH =  

and 
nn BB 12 = or 2211 coscos θθ BB =  

 
 

So  2
2

2
1

1

1 cotcot θθ
H
B

H
B

=  and since HB rµµ0=  we find that 

 
2211 cotcot θµθµ =  : Refraction formula for magnetic field lines. 

 
 
FIELDS WITHIN CAVITIES IN A MEDIUM  
(OR RODS AND DISCS OF MAGNETIC MATERIAL IN A PRE-EXISTING 
FREE SPACE  0B  AND 0H ) 

 
A NEEDLE SHAPED CAVITY 
 
Pre-existing magnetic field in media MH . If 
cavity long and thin so that we can ignore the 
ends (stay away from ends!) 
 

MC HH =  [Think HTangential !] and 
µµ
MC BB

=
0
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DISC-SHAPED CAVITY 

 
If cavity short and wide so that we can ignore 
the edges (stay away from the edges!) 

MC BB =  [Think BNormal !]
 MC HH µµ =0  
 

i.e. CH  is rµµ
µ

=
0

 times its value in the 

medium 
 
 
 
 

 
MAGNETIC CIRCUITS 
 
General problem of magnetic bodies in external fields is extremely difficult! We 
are involved in the simultaneous solution of 
 
A: I=∫ •

l
d lH   B: 0d =∫ • SB

S
  C: HB rµµ0=  

 
and the boundary conditions for B  and H . 
 
Don’t panic! There is one kind of situation involving Ferromagnetic materials 
that is practically important and easy to solve (approximately). 
 
THE ELECTROMAGNET: What is H  in the air gap? 
 

We know that the current (  in the coil, 
and the number of turns 

)i
N , the cross 

sectional area is A  and the value of µ  
for all parts. We assume that the lines of 
B  are parallel to and confined within the 
surface of the ferromagnetic (good 
approximation when µ  large). 
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 Note everywhere 

H  parallel to path  
 
A ⇒  665544332211 HHHHHH lllllld

l
+++++=∫ • lH  

( ) 40165321M HH lllllll +++++=  
iN=  

 
B ⇒ 0d =∫ • SB

S
 ⇒ ABAB M=0   

[Or think of Bnormal at the ferromagnet-free 
space interface. This must be continuous] 

 
C ⇒ HB rµµ0=   ⇒ MM HH µµ =00  
 

∴ ( ) NillL =+− 4040
M

0 HH
µ
µ  

 

( ) 44
M

0
0H

llL

Ni

+−
=

µ
µ  and since 0µµµ rM =  

 

( ) 4
0 1

H
lL

Ni

r

r

−+
=

µ
µ  and  ( ) 4

0
0 1

B
lL

Ni

r

r

−+
=

µ
µµ  
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MAXWELLS EQUATIONS 
 
GAUSS’ LAW 
 
(i) ELECTROSTATICS 
 

∫∫ ==•
v

vdQd
S

ρSD    or   ρ=∇ • D  

 
=D  Electric Displacement [Cm-2] 

 
(i) MAGNETOSTATICS 
 

0=∫ •
S

dSB     or    0=∇ • B  
 
=B  Magnetic Flux Density [Tesla] 

 
AMPERES CIRCUITAL LAW 
 

SJlH dd •• ∫∫ ==
Sl

I   or   JH =×∇  
 

=H  Magnetic Field [Am-1] 
=J  Current density [Am-2] 

 
FARADAY LAW OF ELECTROMAGNETIC INDUCTION 
 
Oestred showed that an electrical current produces a magnetic field (1820). 
1831 ⇒ FARADAY found that a current was induced in a circuit when a 
magnetic field that links the circuit changes. 
 

 
The EMF induced in a 
circuit (given by line l) is 

tV ∂
Φ∂

−=ε  (minus sign 

comes from Lenz’s Law). 
 
 
 
 

Ade Ogunsola 
University of Lagos, 2008 



Electromagnetic Theory          Page 2 Lecture 9  
 

∫ •=Φ
S

dSB  (Any surface whose boundary is the line l) 
 
 

=Φ  MAGNETIC FLUX linked by the circuit [Tesla m2 or Weber, Wb] 
 
The induced EMF Vε  is equal the line integral of the induced E  [Vm-1] electric 
field around the coil. 
 

∫∫ ••
∂
∂

−=
∂
Φ∂

−=
Sl

d
tt

SBlE d    

 
Using Stokes Theorem SElE dd •• ∫∫ ×∇=

Sl
 

 

∫∫ ••
∂
∂

−=×∇
SS

d
t

SBSE d  

 

∴ 
t∂

∂
−=×∇

BE  

 
CONSTITUTIVE RELATIONS 
 

Ohms Law IRV = ,         
A

lR Rρ=  =Rρ Resistivity [Ωm] 

R
C ρ

σ 1
=  =Cσ Conductivity [ 1−Ω m-1] 

A
l
V

l
AV

R
VI C

R
σ

ρ
=== , re-arrange and we get EJ

A
I

Cσ==  

 
Or in vector form (Homogeneous, isotropic media) EJ Cσ=  
 
So we now have: 
 

PED += 0ε   ED rεε0=  
 

( MHB += 0 )µ   HB rµµ0=  
 

EJ Cσ=  
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POWER DISSIPATION AND JOULE HEATING 
 
Power is dissipated in the resistance R causing “Joule Heating”. 
 

RI
R

VIVW 2
2

===  

 

][22 VolumeEJlAEJ
A

lAJW
C

C

C
×===

σ
σ

σ
 

 
dv

v
EJ •∫=W   [Now works if E  and J  in different directions 

and/or vary with position] 
 
 
THE EQUATION OF CONTINUITY 

 
Imagine a volume of space v  that at a given time 
contains a total charge Q , where 
 

∫= v
dvρQ  

If charge can flow out (or into) the volume then there 
is a current. 
 

∫ ∂
∂

−=
∂
∂

−=
v

dv
tt

QI ρ   but   ∫ •=
S

dSJI  

 
[Think about the sign; charge decreasing implies 
current flowing out of surface and note the surface is 
closed] 
 

Gauss’ Theorem states ∫∫ •• =∇
S

SJJ ddv
v

 
 

So that ∫∫ ∂
∂

−=∇ •
vv

dvdv
t
ρJ   or  

t∂
∂

−=∇ •
ρJ  
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DISPLACEMENT CURRENT 
 
In magnetostatics we found that I

l
=∫ • lH d  and hence JH =×∇   

 
But 0=×∇•∇ H  always (!) and 0≠∇ • J  always! 
 

0=∇ • J  only when 0=
∂
∂

t
ρ  i.e. STATICS 

 
RESOLUTION OF THE PROBLEM 
 

ρ=∇ • D   ⇒ 
tt ∂

∂
=

∂
∂

∇ •
ρD  

 

As 
t∂

∂
−=∇ •

ρJ  ⇒ 
t∂

∂
−∇=∇ ••

DJ  or 0=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+∇ •
t
DJ  

 

Now we can see how we may amend Amperes Law 
t∂

∂
+=×∇

DJH  

=
∂
∂

t
D  Displacement current density [Am-2] 

 

Total effective current 
t∂

∂
+=

DJ  [Am-2] 

=J  Conduction current density [Am-2] 
 

∫ •=
S

dSJI    Conduction Current 
 

∫ •
∂
∂

=
S

dSD
t

I  Displacement Current (not a real current) 

 

Ade Ogunsola 
University of Lagos, 2008 



Electromagnetic Theory  Page 5 Lecture 9  
 

AMPERE-MAXWELL LAW IN A DIELECTRIC WITH A FINTE  
CONDUCTIVITY 
 

t∂
∂

+=×∇
DJH   EJ Cσ=   PED += 0ε  

 

ttC ∂
∂

+
∂
∂

+=×∇
EPEH 0εσ  

 
Conduction current  
(Motion of free charges  
through the medium) 

Not related to a motion of 
any sort of charge  

Motion of the bound polarisation charges  
in the vicinity of its nucleus. 
 
In fact we have found that for time varying fields in vacuum ( 0=Cσ , 0=P )  

t∂
∂

=×∇
EH 0ε  

We see a fundamental difference between dynamic and static electrical and 
magnetic fields. 
 
STATICS: 
  
E  and H  are completely independent of each other. 

 
DYNAMICS (examples in vacuum): 
 

When 
t∂

∂E  is finite must also have a H  field where  
t∂

∂
−=×∇

HE 0µ  

or when 
t∂

∂H  is finite must also have a E  field where  
t∂

∂
=×∇

EH 0ε  

 
In dynamics E  and H  are coupled (cannot have one without the other). 
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MAXWELLS EQUATIONS 
 
Gauss’ Law in electricity and magnetism 
 

ρ=∇ • D      [M1] 
 

0=∇ • B      [M2] 
 
Ampere-Maxwell Law 

t∂
∂

+=×∇
DJH     [M3] 

 
Faraday Law 

t∂
∂

−=×∇
BE     [M4] 

 
 
 
LINEAR AND ISOTROPIC MEDIA LINEAR, ISOTROPIC AND 

HOMOGENEOUS MEDIA 
 

ED rεε0=   HB rµµ0=      EJ Cσ=  
 

rε  and rµ  independent of position 

0ε
ρε =∇ • Er  

 
0εε

ρ

r
=∇ • E  

0=∇ • Hrµ  
 

0=∇ • H  

trC ∂
∂

+=×∇
EEH εεσ 0  

 
trC ∂

∂
+=×∇

EEH εεσ 0  

tr ∂
∂

−=×∇
HE µµ0  

 
tr ∂

∂
−=×∇

HE µµ0  
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GENERAL WAVE EQUATION 
 
Consider a medium in which 0=ρ , and that is LINEAR, ISOTROPIC and 
HOMOGENEOUS ( rε  and rµ  constants, independent of position)  

ED ε=   rεεε 0=    HB µ=  rµµµ 0=      EJ Cσ=  
 

0=∇ • E       0=∇ • H  
 

tC ∂
∂

+=×∇
EEH εσ     

t∂
∂

−=×∇
HE µ  

Starting with 
tC ∂

∂
+=×∇

EEH εσ    

Take the curl of both sides 
( )

tC ∂
×∇∂

+×∇=×∇×∇
EEH εσ  

Using ( ) FFF 2∇−∇∇=×∇×∇ •  and 
t∂

∂
−=×∇

HE µ   

2

2
2

ttC ∂
∂

−
∂
∂

−=∇−∇∇ •
HHHH εµµσ  

Since 0=∇ • H   

2

2
2

ttC ∂
∂

+
∂
∂

=∇
HHH εµµσ  

 

Starting with 
t∂

∂
−=×∇

HE µ  

Take the curl of both sides 

   ( )
t∂
×∇∂

−=×∇×∇
HE µ  

Using ( ) FFF 2∇−∇∇=×∇×∇ •  and 
tC ∂

∂
+=×∇

EEH εσ  

 

( )
2

2
2C t t

µσ µε•
∂ ∂

∇ ∇ −∇ = − −
∂ ∂
E EE E  

Since 0=∇ • E  

   2

2
2

ttC ∂
∂

+
∂
∂

=∇
EEE µεµσ  
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We have found the general wave equation 
 

2

2
2

ttC ∂
∂

+
∂
∂

=∇
FFF µεµσ  “The Equation of Telegraphy” 

 
where F  could be D ,E ,B , H  or J  or even currents propagating along cables. 
 
 
THE WAVE EQUATION AND THE DIFFUSION EQUATION 
 
CASE 1 
In an ideal Dielectric medium ( 0=Cσ ) or in a vacuum 0=Cσ , 1== rr εµ  
 

2

2
2

t∂
∂

=∇
FF µε   ⇒  2

2

00
2

t∂
∂

=∇
FF εµ  

 
CASE 2 
Alternatively in a medium of high conductivity we find 
 

2

2

ttC ∂
∂

>>
∂
∂ FF µεµσ   ⇒ 2

2

ttC ∂
∂

>>
∂
∂ FF εσ  

 

Then we get the “Diffusion Equation” 
tC ∂

∂
=∇

FF µσ2  

 

WAVE EQUATION IN FREE SPACE – Plane Wave soln. of 2

2

00
2

t∂
∂

=∇
FF εµ  

 
PLANE WAVE ⇒ There exists a plane on which the field components do not 
vary spatially, i.e. the magnitude of the field vectors vary with time but are 
independent of position on the plane. The plane is called the “Plane of 
Polarisation” and is also often called the “Wavefront”. 
 
e.g. ( ) ( vtxxFzyx −= sin)(,, jF ) is a plane wave travelling in the positive x-
direction with a velocity  . The wave is polarised in the yz-plane, in this case 
along the y-axis. In the yz-plane the field components do not vary spatially i.e. 

application of the operators 

v

y∂
∂  and 

z∂
∂ to this F  gives a result of zero. 
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The velocity of propagation in free space is 
00

1
εµ

=v  [ms-1] 

 
We have seen that E  and H  are “coupled” by the Maxwell curl equations, and 
since F  represents any of the field components these waves are called 
“ELECTROMANETIC WAVES”.  It was Maxwell who observed “that the 
velocity of electromagnetic waves was the same as that of light and so light was 
an electromagnetic wave phenomenon” – the unification of Electricity and 
Magnetism with optics. 
 
In S.I. units    81099792458.2 ×=c  ms-1  [DEFINED] 
    Hm7

0 104 −×= πµ -1   [DEFINED] 
 

00

1
εµ

=c  defines  Fm12
0 10854187814.8 −×= …ε -1 

 

In a dielectric 
rr

cv
εµµε

==
1  

 

Refractive Index rrv
cn εµ

εµ
µε

===
00

 

 
In diamagnetic / paramagnetic media 1≈rµ  and so rn ε=  or  rn ε=2

 
n  is an optical quantity and rε  is an electrical quantity. Unfortunately  and n

rε vary with the wavelength (frequency) of the wave – real media are 
“DISPERSIVE”. Very difficult to measure  and n rε at the same wavelength… 
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PLANE WAVES IN A LINEAR, ISOTROPIC, AND HOMOGENEOUS 
MEDIUM WITH 0=Cσ . 
 
Consider the wave solution for E  propagating in the positive x-direction that is 
of the form ( ) ( ) ( ) ( )vtxEvtxEvtxEvtx zyx −+−+−=− kjiE  (note plane wave 

so the operators 
y∂
∂  and 

z∂
∂  give a result of zero). 

t t
µ∂ ∂

∇× = − = −
∂ ∂
B HE  

So we can write 

zyx EEE
zyx ∂
∂

∂
∂

∂
∂=×∇

kji

E  

{ }
⎭
⎬
⎫

⎩
⎨
⎧
∂

∂
+

⎭
⎬
⎫

⎩
⎨
⎧

∂
∂

−+=×∇
x

E
x

E yz kjiE 0  

 
 

⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

+
∂

∂
+

∂
∂

−=×∇
t

H
t

H
t

H zyx kjiE µ  

∴   0=xH
 
 

Similarly 
t∂

∂
=×∇

EH ε   [ 0=Cσ , and ED ε= ] 

 

zyx HHH
zyx ∂
∂

∂
∂

∂
∂

=×∇

kji

H  

{ }
⎭
⎬
⎫

⎩
⎨
⎧
∂

∂
+

⎭
⎬
⎫

⎩
⎨
⎧

∂
∂

−+=×∇
x

H
x

H yz kjiH 0  

 

⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

+
∂

∂
+

∂
∂

−=×∇
t

E
t

E
t

E zyx kjiH ε  

 
∴   0=xE
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∴ In a linear, isotropic medium where rε  and rµ  are scalar constants so that be 
“ D  and E ” and “B  and H ” are parallel. No component of the wave field is in 
the x-direction. All wave components lie in the plane of the wavefront, 
transverse (perpendicular) to the direction of propagation. 
Plane electromagnetic waves are a TRANSVERSE wave motion in an 
“isotropic” medium – called TEM mode (no longitudinal component of the 
electromagnetic field. 
From y-components (top line) and z-components (second line) 
 

t
E

x
H

t
H

x
E

t
E

x
H

t
H

x
E

zyzy

yzyz

∂
∂

=
∂

∂

∂
∂

−=
∂

∂

∂
∂

=
∂
∂

−
∂
∂

=
∂
∂

εµ

εµ

and

and

 

 
Note that only E  and H  components at right angles to each other are related by 
Maxwells equations – suggests that E  is perpendicular (orthogonal) to H . 
 
EXAMPLE 
Possible solution for ( )xktE −= ωcos0kE , if so what is the solution for H ?  

( )
( )xktkE

xktEEE
zyx

yx

−−=

−
∂
∂

∂
∂

∂
∂

=×∇ ω

ω

sin

cos

0

0

j

kji

E  

 

⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

+
∂

∂
+

∂
∂

−=×∇
t

H
t

H
t

H zyx kjiE µ

∴ ( )
t

H
xktkE y

∂

∂
−=−− µωsin0 .  

Integrate: ( )xktEkH y −−= ω
ωµ

cos1
0  

 
∴ ( )xktH −−= ωcos0jH   

00 EkH
ωµ

=  

H  is in ANTIPHASE with E . Transverse plane polarised wave H  and E  
perpendicular to each other. 
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THE COMPLEX REPRESENTATION OF ELECTROMAGNETIC WAVES 
 
 
We discovered in the last lecture that we had to solve equations of the form 
 

2

2
2

ttC ∂
∂

+
∂
∂

=∇
EEE µεµσ  

 
The solution to this equation can be written in the complex form 
 

( ) ( ) ( )tjzyxtzyx ωexp,,~,,, EE =  
 
In general ( zyx ,, )~E  is a complex number (vector) that varies spatially but is 
independent of time. 
 

== fπω 2 Angular wave Frequency [Rad s-1], and =f Wave Frequency [Hz] 
 

Note   EE ωj
t
=

∂
∂    and   EE 2

2

2

ω−=
∂
∂

t
 

 
Remember physical “wave fields” are REAL functions of position and time. 
When solving a problem we must recover the “real part” from the solution – 
note this is not as obvious as it may seem because ( )zyx ,,~E  can be a complex 
number. Using the complex notation the wave equation becomes  
 

EEE 22 µεωµσω −=∇ Cj  
 
Remember we could replace E  with D , B , H  or J  and the equation would 
still be valid. 
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THE SINGLE PROGRESSIVE (COMPLEX) PLANE WAVE IN AN IDEAL 
DIELECTRIC ( 0=Cσ ). 
 
Must find a solution for E that satisfies the equation EE µεω 22 −=∇  
 COHERNET 

TIME 
HARMONIC 
WAVE 

Assume the solution is of the form ( ) ( )[ ]xktjtzyx −= ωexp~,,, 0EE  
 
Amplitude of the wave oscillation 
(Complex Constant) 
 
k  is called the spatial frequency or wavenumber. 
 
jk is called the propagation constant. 

 
kx−=φ  is the phase of the wave (so in any plane =x constant is a plane of 

constant phase). 
 

EEE 2
2

2
2 k

x
−=

∂
∂

=∇   and   EE 2
2

2

ω−=
∂
∂

t
 

 
 

∴ EE 22 µεω−=− k  and hence 
c
n

v
k ω

λ
πωµεω ±=±=±=±=

2  

 
 
• =k positive root ⇒ Wave propagating in the positive x-direction. 
 
• µεω±=k  which is a real number – peak amplitude does not change as 

wave propagates in the x-direction. Wave is said to be “un-attenuated”. 
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THE PHYSICAL SOLUTION – we want the real part of ( )zyx ,,~E  subject to 
the appropriate boundary conditions. 
 
We have ( ) ( )[ xktjtzyx −= ωexp ]~,,, 0EE  but we know that there is no wave 
component of the electric field in the x-direction. 
 
∴ ( ) ( ) ( )[ ]xktjEEtzyx zy −+= ωexp~~,,, 00 kjE  
 
 
Example 1 
 
If 00

~
yy EE =  and 00

~
zz EE =  (both  and  are real constants) 0yE 0zE

 
Then ( ) ( ) ( )xktEEtzyx zy −+= ωcos,,, 00 kjE  
 
 
Example 2 
 
If 00

~
yy jEE −=  and  (both  and  are real constants) 00

~
zz jEE −= 0yE 0zE

 
Then ( ) ( ) ( )xktEEtzyx zy −+= ωsin,,, 00 kjE  
 
 
Example 3 
 
If 00

~
yy jEE −=  and 00

~
z

j
z EjeE δ−=  ( ,  and 0yE 0zE δ  are real constants) 

 
Then ( ) ( ) ( )δωω +−+−= xktExktEtzyx zy sinsin,,, 00 kjE  
 
The z-component  leads the y-component  by the phase angle zE yE δ . 
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Now we have the electric field component, how do we get the magnetic field 
component? 
 

t∂
∂

=×∇
EH ε     

t∂
∂

−=×∇
HE µ  

 

zy EE
zyx

~~0
∂
∂

∂
∂

∂
∂

=×∇

kji

E  

{ } ( )[ ]( ) ( )[ ]( )
⎭
⎬
⎫

⎩
⎨
⎧

−
∂
∂

+
⎭
⎬
⎫

⎩
⎨
⎧

−
∂
∂

−+=×∇ xktjE
x

xktjE
x yz ωω exp~exp~0 00 kjiE  

 

( )[ ]( ) ( )[ ]( ) ( )[ ]( )xktjH
t

xktjH
t

xktjH
tt zyx −

∂
∂

+−
∂
∂

+−
∂
∂

=
∂
∂ ωωω exp~exp~exp~

000 kjiH

 

t∂
∂

−=×∇
HE µ  

 
⇒ 0~

0 =xH  
 

⇒ 00
~~

yz HjEjk ωµ−=  and hence 00
~~

zy EkH
µω

−=  

 

⇒ 00
~~

zy HjEjk ωµ−=−  and hence 00
~~

yz EkH
µω

=  

 
 

( ) ( )[ ]xktjEkEktzyx yz −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= ω

µωµω
exp~~,,, 00 kjH  

 
 
( ) ( ) ( )[ ]xktjHHtzyx zy −+= ωexp~~,,, 00 kjH  
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THE POLARISATION STATE OF AN ELECTROMAGNETIC WAVE 
 
Consider the wave with ( ) ( )δωω +−+−= xktExktE zy sinsin 00 kjE  
 
i.e. ( xktEE yy )−= ωsin0   and  ( )δω +−= xktEE zz sin0   
 
Various polarisation sates of the wave are possible depending on the relative 
magnitudes and phases of the two “E” components. 
 
Consider any plane x=constant. Any such plane of constant phase and is called a 
“plane of polarisation” or a “wavefront”. What happens in this plane as time 
varies? 
 
Consider the plane x=0. ( )tEE yy ωsin0=  and ( )δω += tEE zz sin0  
 
• If 0=δ  or πδ = , the polarisation is LINEAR. The amplitude of the total 

electric vector varies between zero and 2
0

2
0 zy EEE += . 

• If 
2
πδ ±=  and  the polarisation is CIRCULAR and the magnitude 

of the total electric vector is independent of time. 
00 zy EE =

 
• If πδ <<0 figure s described in an “anticlockwise” sense. 
 
• If 0<<− δπ figure s described in a “clockwise” sense. 
 
• Otherwise the polarisation of the wave is elliptical. The magnitude of the 

total electric vector is never zero. 
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THE MAGNEIC FIELD 
 

( kxtEE yy −= )ωsin0     ( )kxtEkH yz −= ω
µω

sin0  

    
t∂

∂
−=×∇

HE µ  

( )δω +−= kxtEE zz sin0     ( )δω
µω

+−−= kxtEkH zy sin0  

        

( )πδω
µω

±+−= kxtEkH zy sin0  

 

We see (again!) that zy EkH
µω

−=  and yz EkH
µω

=  
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ORTHOGONALITY  0=++=• zzyyxx HEHEHEHE  
 
E  and H  are perpendicular to each other at all times! 
 
WAVE IMPEDANCE/ INTRINSIC IMPEDANCE OF A MEDIUM 
 

( )kxtEE yy −= ωsin0  and ( )δω +−= kxtEE zz sin0  
 
The magnitude of the electric field is 22

zy EEE +=  
 

Similarly EEEEkHHH yzzy µ
ε

µω
ωεµ

µω
==+=+= 2222  

 

∴ 
ε
µ

=
H
E  [Ohm] INTRISIC IMPEDANCE OF THE MEDIUM 

In free space Ω== 377
0

0

ε
µ

H
E . In an ideal dielectric 

r

r

H
E

ε
µ

ε
µ

0

0=  (real 

quantity purely resistive) 
 

[Note: 
r

r

H
E

ε
µ

ε
µ

0

0=  and ED ε=  so HD µε=  etc.] 

 
ENERGY TRANSPORTED IN EM-WAVE 
 
 

ε
µ

=
H
E  ⇒  2

0
2

0 HE rr µµεε =

 

=
2

2
0 Erεε ENERGY DENSITY OF ELECTRIC FIELD [Jm-3] 

 

=
2

2
0 Hrεε ENERGY DENSITY OF MAGNETIC FIELD [Jm-3] 

 
2

0
2

0 HE rr µµεε =  ⇒Wave energy is equally divided between electric and 
magnetic components of field in dielectric medium. 
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ELECTROMAGNETIC WAVES IN MEDIA OF FINITE CONDUCTIVITY. 
 
Relaxation Time of the Medium 
 
Linear, homogeneous, isotropic medium of conductivity cσ  which contains free 
charge of volume density ρ  
 

Equation of continuity 0=
∂
∂

+∇ •
t
ρJ  

EJ Cσ=  ⇒ ECt
σρ

•−∇=
∂
∂  

ED ε=  ⇒ D•∇−=
∂
∂

ε
σρ C

t
 

ρ=∇ • D  ⇒ ρ
ε
σρ C

t
−=

∂
∂  or 0=+

∂
∂ ρ

ε
σρ C

t
 

 

Solution of which is ( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛−=

τ
ρρ tzyxtzyx exp,,,,,  where 

Cσ
ετ =  and is 

called the “relaxation time”. 
 
e.g.  For copper  and 117108.5 −−Ω×= mcσ 1≈rε  so that 1810−≈τ s 

For pure water  and 11510 −−− Ω≈ mcσ 80≈rε  so that 610−≈τ s 
 
∴ If a free charge density is present in a conducting medium, it decays away at 
a rate that is independent of any applied fields. ⇒ Eventually all the free charge 
resides on the surface of the medium – A well know result in Electrostatics of 
Conductors! 
 
It is impossible to create a stable free charge distribution in a conducting 
medium. 
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Plane Waves in a Conducting Medium 
 
Assume plane wave travelling in the x-direction ( )[ ]kxtj −= ωexp~

0EE  
 

Wave Equation: 2

2
2

ttC ∂
∂

+
∂
∂

=∇
EEE µεµσ  

∴  EEE µεωωµσ 22 −=− Cjk  
 
or     (1) Cjk ωµσµεω −= 22

 
If we let βα jk −=  then   (2) αββα jk 2222 −−=
 
So using (1) and (2) we get  

µεωβα 222 =−  
 and  

Cωµσαβ =2  
 
Which we need to solve for α  and β  
 

CASE A: “Poor Conductor”  ⇒ 2

2

ttC ∂
∂

<<
∂
∂ EE µεµσ  

 
⇒  222 βααβ −<<

 
For 0=cσ  we see that 0=β  and  µεωα 222 ==k
 

Alternative approach for 0=cσ  wave equation becomes 2

2
2

t∂
∂

=∇
EE µε  

 
With ( )[ ]kxtj −= ωexp~

0EE  we get  EE µεω 22 −=− k  
 

µεω 22 =k  
 
      µεω=k  
 

Since 
c
n

v
k ωω

λ
π

===
2  we see that when 0=cσ  both k  and  are real. n
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CASE B: “Good Conductor”  ⇒  2

2

ttC ∂
∂

>>
∂
∂ EE µεµσ  

⇒   µεωωµσ 2>>C

       
ωεσ >>C  

 

      
ε
σω C<<  

 
µεωωµσ 2>>C   ⇒   222 βααβ −>>

 

So if we assume  and hence 022 ≈− βα
2

22 Cωµσβα ≈≈  

 

Alternate approach: For a good conductor 
tC ∂

∂
≈∇

EE µσ2  

 
EE Cjk ωµσ=− 2  and . So with Cjk ωµσ−=2 βα jk −=  

 
Cjjk ωµσαββα −=−−= 2222  

 

and  βα =  and 
2

22 Cωµσβα ==  

 
Remember ( )[ ]kxtj −= ωexp~

0EE  
 
We know from before that since the x-component of the Maxwell curl equations 
are zero there is no wave component of E  or H  in the x-direction. 
 
For simplicity we assume ( )[ ]kxtjEy −= ωexp~

0jE  
 
Inserting  βα jk −=  gives 
 

[ ] ( )[ ]xtjxEy αωβ −−= expexp~
0jE  

 
∴  The electric field is attenuated as the wave propagates  

and =β  Attenuation constant [m-1] 
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The magnetic field is obtained from the specified electric field using the 

Maxwell curl E  equation: 
t∂

∂
−=×∇

HE µ  

0~0 yE
zyx ∂
∂

∂
∂

∂
∂

=×∇

kji

E  

{ } { } ( )[ ]( )
⎭
⎬
⎫

⎩
⎨
⎧

−
∂
∂

++=×∇ xktjE
x y ωexp~00 0kjiE  

 
We see that  ( )[ ]xktjH z −= ωexp~

0kH  
 

( ) ( ) ( )[ ]( )xktjH
tt z −
∂
∂

++=
∂
∂ ωexp~00 0kjiH  

 

Using 
t∂

∂
−=×∇

HE µ  

⇒ 00
~~

zy HjEjk ωµ−=−  and hence 00
~~

yz EkH
µω

=  

 

( )[ ]xktjEk
y −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ω

µω
exp~

0kH  

 
Inserting  βα jk −=  gives 
 

( ) [ ] ( )0 exp expy

j
E x j t

α β
β ω

µω
−

= − xα−⎡ ⎤⎣ ⎦H k  

 

Writing ( )φβαβα jj −+=− exp22  where 
α
βφ =tan  

 

[ ] ( )[ ]φαωβ
µω

βα
−−−

+
= xtjxEy expexp~

0

22

kH  

 

But 
2

22 Cωµσβα ==  
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[ ] ( )[ ]φαωβ
µω
σ

−−−= xtjxEy
c expexp~

0kH  

 
[ ] ( )[ ]xtjxEy αωβ −−= expexp~

0jE  
 

• Like the electric field, the magnetic field is attenuated as the wave 
propagates.  

 
• We note also that the magnetic field lags behind the electric field by a 

phase angle  φ . In a good conductor βα =  so that 
4
πφ = . 

 

• In a good conductor we define the “skin depth” 
Cωµσβ

δ 21
==  [m]. 

When the wave impinges on a good conductor practically all the 
transmitted energy is absorbed in a few “skin depths” – i.e. converted to 
“Joule Heat” within the material. 

 
 
WHAT IS A GOOD CONDUCTOR?  
 

If 
ε
σω C<<  then the material is a good conductor! 

 
For example: 
Pure water: EM radiation at 14105× Hz, 33.2=rε  and  11510 −−− Ω= mCσ

5
12

5

0
1085.4

33.21085.8
10

×=
××

= −

−

r

C

εε
σ

 which is 141052 ××<< π  

Hence at these frequencies, fresh water is a very poor conductor! Waves 
transmitted without much loss. 
Sea water: EM radiation at 1000Hz, 80=rε  and  115 −−Ω= mCσ

9
12

0
107

801085.8
5

×=
××

= −
r

C

εε
σ

 which is 3102 ×>> π  

Hence at these frequencies, seawater is a very good conductor! Waves 
rapidly attenuated. 
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Plane Waves in a Conducting Medium (General Solution) 
 
Assume plane wave travelling in the x-direction ( )[ ]kxtj −= ωexp~

0EE  
 

Wave Equation: 2

2
2

ttC ∂
∂

+
∂
∂

=∇
EEE µεµσ  

∴  EEE µεωωµσ 22 −=− Cjk  
 
or     (1) Cjk ωµσµεω −= 22

 
If we let βα jk −=  then   (2) αββα jk 2222 −−=
 
So using (1) and (2) we get  

µεωβα 222 =−    (A) 
 and  

Cωµσαβ =2    (B) 
 
Which we need to solve for α  and β  
 

Eqn. B gives us 2

222
2

4α
σµω

β C= , which we can use with Eqn. A to get 

 

µεω
α
σµω

α 2
2

222
2

4
=− C  ⇒ 0

4

222
224 =−− C

σµω
µεαωα  

 

2

2222242
2 C

σµωεµωµεω
α

+±
= . Using  and µεωβα 222 =−

00

2 1
εµ

=c  

 

⇒ 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
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Note   and  0→
C

σ 02 →β µεωα 22 →

Note 1>>
εω
σ

C  2
0

22

2 c
Cr

ε

σωµ
βα ==  

 
We saw that for   [ ] ( )[ ]xtjxEy αωβ −−= expexp~

0jE  
 

we got   [ ] ( )[ ]φαωβ
µω

βα
−−−

+
= xtjxEy expexp~

0

22

kH  

 

where we have written ( )φβαβα jj −+=− exp22  and 
α
βφ =tan  

 
Refractive Index 
 
We should also notice that in a conductor ( )0≠

C
σ  the refractive index is 

complex 

c
nk ω

=  ⇒ ( ) ( )αββα
ω

ωµσµεω
ωω

jcjckcn C 222
2

2
2

2

2

2

22
2 −−=−==  

   ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

ωε
σεµ

0

2 C
rr jn  

 
So we see that a complex k  means we must have a complex n .  
 
So we could write  and equate with βα jnnn −= βα jk −=  giving 

c
nαωα =    and   

c
nβω

β =  

 

Now 
λ
πω

λ
πω

α
α 22

0
===

v
n

c
n  so that we can write 

α

λλ
n

0= and 
αn
cv =   

  
 
The wavelength λ  and the velocity in the medium are determined from the 
free space values by or equivalently 

v
αn α . 

 
The Range of the wave in the medium is determined by β  or equivalently . βn
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THE SKIN EFFECT IN GOOD CONDUCTORS: µεωωµσ 2>>C  
 

2
22 Cωµσβα ==  and the “skin depth” 

Cωµσβ
δ 21

==  

 
We can now re-write the E  field we are using in the previous example as 

⎥⎦

⎤
⎢⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −⎥⎦

⎤
⎢⎣
⎡−=

δ
ω

δ
xtjxEy expexp~

0jE  

 
Since EJ Cσ=  
 

⎥⎦

⎤
⎢⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −⎥⎦

⎤
⎢⎣
⎡−=

δ
ω

δ
xtjxJ y expexp~

0jJ  

 
The E field causes a current to flow in the conductor and the wave energy is 
dissipated in a few skin depths as Joule Heating and both E  and H fields decay 
to zero. (What happens in a perfect conductor?)  
 
 
Now consider the flow of current down a wire of circular section and radius . a
 
In the D.C. case 0→ω  the current density is uniform and 2aJI π= . 
 
But at high frequencies practically all the current flow is confined to a thin 
“sheet” or “skin” at the surface. The maths to show this involves Bessel 
functions – but if δ>>a  then we can find 
 

( )
⎥⎦
⎤

⎢⎣
⎡ −
−== = δ

raJJ ar expJ  

 
If δ>>a  95% of the current flows within δ3  of the surface ⇒ hollow 
conductors are as good as solid ones! Note as 5.0−∝ωδ  the higher the 
frequency the thinner the skin, which implies the higher the resistance since 
effective area gets smaller as ω  increases. 
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ENERGY TRANSFER BY AN ELECTROMAGNETIC FIELD 
 
THE POYNTING VECTOR 
 
Start with the Maxwell curl equations: 
 

t∂
∂

+=×∇
DJH     

t∂
∂

−=×∇
BE  

 

t∂
∂

+=×∇ •••
DEJEHE   

t∂
∂

−=×∇ ••
BHEH  

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

−−=×∇−×∇ •••••
tt
BHDEJEHEEH  

 
For any two vectors YXXYYX ×∇−×∇=×∇ •••  
 

Therefore ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

−−=×∇ ••••
tt
BHDEJEHE  

 
Consider volume  bounded by a surface  and integrate over the volume v S
 

∫∫∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

−−=×∇ ••••
vvv

dvdvdv
tt
BHDEJEHE  

 
HEΠ ×=  POYNTING VECTOR [Vm-1][Am-1]=[Wm-2] 

 
Gauss’ Theorem ∫∫ •• =∇

Sv
ddv SΠΠ  

 

∫∫∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

−=+ ••••
vvS

dvdvd
tt
BHDEJESΠ  POYNTING’S 

THEOREM 
 
For linear and isotropic media: ED ε=  and HB µ=  
 

∫∫∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∂
∂

−=+ ••
v

22

vS
dv

2
H

2
Edvd µε

t
JESΠ  
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Interpretation of Poynting’s Theorem when the volume does not contain a 
power source. 
 

∫∫∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∂
∂

−=+ ••
v

22

vS
dv

2
H

2
Edvd µε

t
JESΠ  

 
 
 

Ade Ogunsola 

 
 
 
 
 
 
 
 
 
 
 

 
By conservation of 
energy this must be 
the rate at which EM 
energy is leaving  
through the surface 

  

v

S
⇒ Power flow 
through S[Js-1=W] 

 

= ∫ ∫=v v
2

2

dvJdvJ
R

C
ρ

σ
 

(using EJ Cσ= ) 
 
EM energy is dissipated 
as Joule Heating within 
the volume. [Js-1=W] 

Sum of the Electric and 
Magnetic energies in the 
volume (as derived in 
statics) = 

∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

v

22

dv
2
H

2
E µε  

 
∴  

∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∂
∂

−
v

22

dv
2
H

2
E µε

t
 

= ×−1 (Rate of change of 
EM energy in the volume). 
= Rate of decrease of EM 
energy in the volume. 
[Js-1=W] 

 
 
 
 
 
 
 
 
 
NOTE (1) The EM energy within the volume decreases because some is 
converted into Joule Heating of the medium and the rest is leaving the volume 
through its surface. 
 
NOTE (2) If ⇒ 0=Cσ . No Joule heating and all of power flowing through the 
surface 

∫∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∂
∂

−=•
v

22

S
dv

2
H

2
Ed µε

t
SΠ . 

 
NOTE (3) Π= Flux of power through the surface. 

University of Lagos, 2008 
 



Electromagnetic Theory      Page 6 Lecture 13 
 

Interpretation of Poynting's Theorem when the volume contains a power source. 
 
What is the power source? 
 
Eg. 1. Inside a battery an electric field ′E  is produced by an electro-chemical 
reaction – work done by chemical reaction. 
 
Eg. 2. Within a dynamo an electric field ′E is produced by electromagnetic 
induction – mechanical work done.  
 
The current density at any point is now given by 
 

( )′+= EEJ Cσ  ⇒ ′−= EJE
Cσ

 

 

∴ ∫∫ ∫ ••
′−=

vv v

2

dvdvJdv JEJE
Cσ

 

 
 
 Power generated 

within the volume  
[Js-1=W] GP  

 
 
 
 
 
 
 

As before this term 
represents EM energy 
dissipated through Joule 
Heating within the 
volume. [Js-1=W] 

∴ Now ∫∫∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∂
∂

++= •
v

22

v

2

S
dv

2
H

2
EdvJdP µε

σ tC
G SΠ  

 
Part of Power 
generated within 
the volume leaves 
through surface. 

Part of Power is 
dissipated within 
the volume as Joule 
heating. 

The remainder 
increases the EM 
energy contained 
in V 

 
 
 
 
 
 

Note in ideal dielectric 0=J . In steady state ( ) 0→
∂
∂
t

, ∴ all power generated 

flows through the surface so ∫ •=
S

dP SΠG  
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Applications of Poynting’s theorem 
 
Linearly Polarised Plane Wave in an ideal dielectric 
 

yEjE =   ( )kxtEEy −= ωcos0  

       y

z

E
H

µ
ε

=  

zHkH =   ( )kxtEH z −= ω
µ
ε cos0  

 
zy HEi=×= HEΠ  

 

( kxtEx −=Π ω
µ
ε 22

0 cos )  [Note always positive] 

 

∴ Time average Poynting Vector 22
02

1
RMSx EE

µ
ε

µ
ε

==Π  

 

NOTE:   ⎥
⎦

⎤
⎢
⎣

⎡
×⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
flowof

Velocity
density

energyMean
areaunitper

flowenergyofrateMean

 
[ ]ex vW ×=Π  

 

[ ] [ ]
24

1
4
1

2
1 2

02
0

2
0

2
0

2
0

22 EEEHEHEW εεεµεµε =+=+=+=  

 

∴[ ]
µε
1

=
Π

=
W

v x
e    [Hurray!] 
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Power Dissipation in a wire (constant current) 
 
Consider a circular wire radius 

carrying a current a I . 
 
If V  is the P.D. dropped between 

and 0z lz +0  
 

   ∫
+

−=−
lz

z
VE0

0
dzz l

VEz =  

 

[Note for all ar < , 
l
VEz =  but for 

ar >  0=zE ] 
 
At ar ≥  Amperes Law gives  

r
IH
πϕ 2

=  

 
 

 
zEzE ˆ=  and ϕHφH ˆ=   so  ϕHEz φzHEΠ ˆˆ ×=×=  

( )rφzΠ ˆ
2

ˆˆ
2

−=×=
rl

VI
r

I
l
V

ππ
 

 
Now consider integration over surface of wire: 
 

( ) VIal
al

VI
al

VI
==−−=− ∫∫ •• π

ππ
2

2
dˆ

2
d

SS
SrSΠ  

 

∫ •
S

dSΠ  is negative i.e. power flows inwards from the surface. 
i.e. The power dissipated in the wire is a result of an “inflow” of power 
associated with fields of the wire through its surface. 
 

Note in this case the 
t∂
∂  term in the Poynting’s theorem is zero 

VIla
a
I

l
V

===− ∫∫ ••
2

2vS
dvd π

π
JESΠ  
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Consider a constant current I  flowing to increase the charge on the plates 
of a capacitor. 
 
 a 
 
 

+V  z 
 

d  
 

y  0  
 
x 
 
 

For ar ≤  we get   ( )z
d
V ˆ−=E  

 

Applying Ampere’s Law: I
tSC

−=
∂
∂

= ∫∫ • SDlH dd .  ar ≥  

 

For ar ≥ we get   ( )
r

I
π2

φ̂H −=    

 

( ) ( )
r

Iz
d
V

π2
ˆˆ φHEΠ −×−=×=  

 

( )rHEΠ ˆ
2

−=×=
rd

IV
π

 

 
Now consider integration over surface at edge of capacitor 
 

( ) VIad
ad

VI
ad

VI
==−−=− ∫∫ •• π

ππ
2

2
dˆ

2
d

SS
SrSΠ  

 
 “Inflow” of power associated with fields at the surface. In between the 
plates conductivity is zero – no Joule Heating. Where is this power 
going?  

∫∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∂
∂

=− •
v

22

S
dv

2
H

2
Ed µε

t
SΠ  
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Electromagnetic Momentum Density : G  
 

BDG ×=  [Cm-2Tesla] = [Cm-2NA-1m-1] = [Asm-2NA-1m-1]=[Ns m-3] 
 
For linear media 
 

ΠHEHEBDG εµεµµε =×=×=×=  
 

2v
ΠG =  

 
 
 
 
Radiation Pressure 
 

Consider an EM wave propagating with velocity 
µε
1

=v  in a linear 

medium. 
 
If the wave is incident normally on a totally absorbing surface, then in 
one second the momentum absorbed per unit area of the surface G.v=   
 

Therefore, 
v

Pr
Π

=     [Nm-2] 

 

If the surface is perfectly reflecting 
v

Pr
Π2

=  

 
 
The Poynting vector and the complex field notation. 
 
Suppose that  ( )[ ]kxtj −= ωexp~

0EE  
and   ( )[ ]kxtj −= ωexp~

0HH  
 
Then ( tj )ω2exp∝×HE  - time average over one period is zero! 
 

( ) ( )HEΠ ReRe ×=  
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Reflection and the Fresnel Equations 
 
“Books are like a mirror. If an ass looks in, you can't expect an angel to look out.” B C Forbes 
 
Reflection of Plane Wave at a Dielectric Boundary (incident on dielectric from 
free space).  

Ade Ogunsola 

 
(1) Normal Incidence 
 

([ zktjE I 10I exp )]−= ωiE       
 

([ zktjH I 10I exp )]−= ωjH   
 

001 εµω=k  
 

([ zktjE R 10R exp )]+= ωiE   
        

( )[ zktjH R 10R exp +−= ]ωjH    
 

([ zktjE 2T0T exp )]−= ωiE      
 

( )[ ]zktjH 2T0T exp −= ωjH  

z 

ET EI 

HT 

HR

x 

y 

ER 

HI 

 
µεω=2k  

 
Place boundary at 0=z  and use boundary conditions.  
Tangential component of E-field must be continuous at boundary. 

T0R0I0 EEE =+   (A1) 
 
Tangential component of H-field must be continuous at boundary (so long as no 
surface currents). 

T0R0I0 HHH =−  
 

We know that 
ε
µ

=
I0

I0

H
E  etc ⇒ T0R0

0

0
I0

0

0 EEE
µ
ε

µ
ε

µ
ε

=−  

 
⇒ T0R0I0 EEE rrεµ=−  ⇒ T0R0I0 nEEE =−   (B1)  

[Assuming 1=rµ ] 
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Using (A1) and (B1) 
nE

Etn +
==

1
2

I0

T0  and 
n
n

E
Ern +

−
==

1
1

I0

R0  

 
Reflection Coefficient  = Reflected energy/Incident energy 
 

 vectorPoyntingincident  averaged Time
 vectorPoynting reflected averaged Time

=  

 
22

I0

R0

1
1

⎟
⎠
⎞

⎜
⎝
⎛
+
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

n
n

E
ER  

 
Transmission Coefficient = R−1  
 

( )  vectorPoyntingincident  averaged Time
 vectorPoynting ed transmittaveraged Time

2
1

2
1

1
4

2
I0

2
T0

0

0

2 ==
+

=
E

E

n
nT

µ
ε
µ
ε
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(2) E  field perpendicular to the plane of incidence 
 
Tangential component of E-field must be continuous at boundary. 

T0R0I0 EEE =+      (A2) 
 
Tangential component of H-field must be continuous at boundary (so long as no 
surface currents). 

0I 0R 0Tcos cos cosI R TH H Hθ θ θ− + = −  
 

TRI EEE θ
µ
εθ

µ
εθ

µ
ε coscoscos T0R0

0

0
I0

0

0 =−  

 
TRI nEEE θθθ coscoscos T0R0I0 =−  

[Assuming 1=rµ ] 
and using RI θθ coscos =  

TII nEEE θθθ coscoscos T0R0I0 =−   (B2) 
 

Using (A2) and (B2)  
TI

I

nE
Et

θθ
θ
coscos

cos2

I0

T0

+
==⊥   

TI

TI

n
n

E
Er

θθ
θθ

coscos
coscos

I0

R0

+
−

==⊥  

 

θR 

θT 

y

x

H

E
H

θI 

E

E
HI

E field perpendicular to plane of incidence
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(2) E  field parallel to the plane of incidence 
 
Tangential component of E-field must be continuous at boundary. 

0I 0R 0Tcos cos cosI RE E E Tθ θ θ− =   (A3) 
 
Tangential component of H-field must be continuous at boundary (so long as no 
surface currents). 

T0R0I0 HHH =+  
 [Assuming 1=rµ ] 

and using RI θθ coscos =  
T0R0I0 nEEE =+   (B3) 

 

Using (A3) and (B3)  
TI

I

nE
Et

θθ
θ
coscos

cos2

I0

T0
|| +

==   

 

TI

TI

n
n

E
Er

θθ
θθ

coscos
coscos

I0

R0
|| +

−
==  

 

θR 

θT 

y
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E

H

θI 

H

HI 

 
 

E field parallel to plane of incidence
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Note 1: The formula given above are called the “Fresnel Equations”. 
  
Note 2: The formula above can be simplified using Snell’s Law 

2211 sinsin θθ nn = , or in our derivations TI n θθ sinsin =  
 

 ( )
( )TI

TIr
θθ
θθ

+
−

−=⊥ sin
sin    ( )

( )TI

TIr
θθ
θθ

+
−

=
tan
tan

||  

 

( )TI

ITt
θθ
θθ

+
=⊥ sin

cossin2    ( ) ( )TITI

ITt
θθθθ

θθ
−+

=
cossin
cossin2

||  

 

We see that  as 0|| →r
2
πθθ →+ TI  so no light is reflected for this polarisation. 

 

Note also that  changes sign at ||r
2
πθθ =+ TI  so there is a phase shift of π  in 

the reflected parallel components of the E- (and H-) fields when sweeping the 
incident angle Iθ  through the polarisation angle Pθ  ( Pθ  is the value of Iθ  for 

which 
2
πθθ =+ TI ). However,  is always negative so no phase change in the 

reflected perpendicular components of the E- (and H-) fields. 
⊥r

 
Note 3: Be careful using the Fresnel Equations, must get the polarisation 
correct! Easy to get confused! 
 
Note 4: Can calculate the reflected and transmitted intensities using the Fresnel 
Equations. 
 
Note 5: Could derive the Fresnel Equations for transmission a boundary where 

 and investigate total internal reflection…but not here! See for example 
Optics (Second Edition) by Hecht. 

TI nn >
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Reflection at a conducting boundary. 
 
Consider the case where plane wave travelling in free space strikes at normal 
incidence a conducting boundary  
 

([ zktjE I 10I exp )]−= ωiE      001 εµω=k    
([ zktjH I 10I exp )]−= ωjH   

 
([ zktjE R 10R exp )]+= ωiE   

        
( )[ ]zktjH R 10R exp +−= ωjH  

 
[ ] ([ ztjzE TT )]αωβ −−= expexp0iE     βα jk −=2  

          
[ ] ( )[ ]zktjzH TT −−= ωβ expexp0jH  

( ) [ ] ( )[ ]zktjzEj
TT −−

−
= ωβ

µω
βα expexp0jH   (See lecture 12) 

 
Boundary at 0=z . Tangential component of E-field must be continuous at 
boundary. 

T0R0I0 EEE =+     (A4) 
 
Tangential component of H-field must be continuous at boundary (so long as no 
surface current unit length flowing on the boundary, i.e. we have a good 
conductor not a perfect conductor). 
 

T0R0I0 HHH =−  
 

( )
TEjEE 0R0

0

0
I0

0

0

µω
βα

µ
ε

µ
ε −

=−  

 

For a good conductor 
2

Cωµσβα ==  

( ) T
r

C EjEE 0
0

R0I0 2
1

εωµ
σ

−=−   (B4) 
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Using (A4) and (B4) 
 

( )

( )
0

0

I0

R0

2
11

2
11

εωµ
σ

εωµ
σ

r

C

r

C

n

j

j

E
Er

−+

−−
==  

 

C

r
n E

ER
σ

εωµ 0
2

I0

R0 221−≈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  

 

For copper at infrared frequencies (around 1014 Hz) 01.02 0 ≈
C

r

σ
εωµ , so about 

98% of infrared radiation is reflected, the remainder is absorbed in the metal 
due to Joule Heating.  
 

At lower frequencies (e.g. radio waves) 60 102 −≈
C

r

σ
εωµ  almost all radiation is 

reflected.  
 
At higher frequencies (>1015 Hz), simple theory does not work, we need to take 
account of the atomic transitions that take place and give rise to the colour of 
the metal. 
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