Frequency Spectra

What is your circuit radiating?



More Exactly

m What frequencies exist in your signal?
m What frequencies exist in your circuit?

m \What can | consider to be the highest
frequency of interest?




" A
Waveforms

m Periodic
Sine or Cosine are most common
Pulse train is also very common
m Aperiodic, or single pulse
Also quite common



Pulse Train

m Rectangular Pulses
m Even Symmetry




Trigonometric Fourier Series

a N=00 o0 -
f(t) = ?°+ Y a,cosnat+ Y b sinnat
n=1 n=1

m Where the fundamental radian frequency
IS
w,=27lT

m Note presence of harmonics only



Harmonic Content Only?

m Look at a square wave constructed from
Harmonics

m Add a non harmonic component
m Use Fourier for Pulse Train.mcd
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Coefficients

m Harmonic amplitude coefficients

? oT/2
a, =—[_ f(t)dt
m D.C. Term T o-T/2

D oTI2
a =— L/Z f (t)cosnaw, tdt
m Zero for odd symmetry T

D oTI2 _
bn:—j f (t)sin nw,tdt
T J-1/2
m Zero for even symmetry



Exponential Fourier Series

f(t) = nio‘jcne"”‘”ot =C, + 2r§'j|cn [cos(naw,t - 6,)+ jsin(naw,t - 6,)]
n=1

N=—o0

m More compact

m Complex expression allows negative
frequencies

Mathematical convenience



Exponential Form
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Coefficients

1 . 1 .
=—(a,—Jb c,*=—(a,+jb
Cn Z(an Jn) n 2( n Jn)

m Positive and Negative Frequencies
m Half amplitude of a, and b,
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Negative Frequencies
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Pulse Train

m Rectangular Pulses
m Even Symmetry




" A
Pulse Train Harmonics

m Using Complex Form

t,/2 ty /2 B +jna)ot%_ _jnwot%_
cn:l jAe’””otdt:i{_ _A anot} _Ale | e
! —tp/2 T N, ~t,/2 T INw,
m This gives
A At, sin(no,, P At, sin(nnf,t
o = 2P sin(no, o4y = Alp SN, %) _ Aty sin(nafet,)
oo T T no, % T nrfyt,

m Note Sinc(x) function giving double sided
spectrum
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Example Spectrum
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Example Spectrum
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Final Comments on Spectrum

m Even Symmetry
b terms zero
mC,=a,/2

m Spectrum becomes

Al =, sin(nzf t)
f(t)=—"]|1+2 22 cos(nagt
(t) - Z;, -y (Nat)




Final Comments on Spectrum

_ Atp
m DC Component T
s b
m Duty Cycle T
V.. =AS
m DC
a = 2AS sin(nzo)
nN7zo

m Harmonic Amplitudes
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Points

m Harmonics separated by fundamental
frequency

m The larger T, the closer the lines are in the
spectrum

m Zero amplitudes occur when T = 1/t,

m Negative amplitudes denote 180° phase
shift.



Single Pulse

m Aperiodic Waveform (Single Pulse)
m Fourier Series Is not applicable

T Is Infinite

Separation of terms is OHz
m Continuous spectrum

m Fourier Transform used



Single Pulse

m No discrete frequencies

m Complimentary pair of transform
equations.

m Pulse Definition

t t
A —LP<t< Lt
2 2
f(t)=1

0 elsewhere




Fourier Transform

m [ransform Pair

c(f) = T f (t)e '“'dt

f(t) = Tc(f)ej“"df



Single Pulse Spectrum

il

2
c(f)=A je‘j“’tdt

2

o(F) =—2[cos(et) — jsin(a)t)]t?pt
— Ja) P

2

c(f)= {sm(a)tp)}



Single Pulse Spectrum

t
sin(ew )
o(f) = At, 2
a)t_p
2
sin(ft )
c(f)=At, ()
At

c(f)= At sinc(xt,)



Single Pulse Spectrum

m Sinctendsto 1l asftendstoO
m Amplitude becomes AtIO at OHz

m Amplitude in V or V/Hz
Spectral Density

m Zero Crossings at 1/, 2/t eftc.
m Occur at higher frequencies as t, reduces




"
Single Pulse
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Single Pulse Spectrum
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Single Pulse Spectrum

m Formulae work well for theoretical
calculation

m Measurements are slightly different.
Sampled data
No neat equation for pulse (stream)

m Use Fast Fourier Transform (FET)
Available in most maths packages
Available in many oscilloscopes



Some Practicalities

m \What is the highest frequency component |
need to worry about?

m Depends on spectrum of signal

m Depends on frequency dependence of
coupling

m Look here at the maxima of spectrum

m Produce a fairly simple design graph
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Pulse Train Approximate
Harmonic Envelope

m Onlynterested inthe peaks of the lobes

sin(nzf,t ) =+1



"
Pulse Train Approximate
Harmonic Envelope

m This gives us
7 3w Srx
nafot, = etc
2 2 2

m at frequencies
1 3 5
2t 2t 2t

Y p P
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Pulse Train Approximate
Harmonic Envelope

m Approximate envelope of the peaks

follows.l
fo
ﬂtp
2A
ma is N7
nmax
t
B = 2 Tp flt
m This comes from Moty
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Pulse Train Approximate
Harmonic Envelope

m Largest Amplitude occurs at the lowest
frequency 1

—=1 or f=—
nft nt

P p

a |=2A0

nmax

m The maximum amplitude Is
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Pulse Train Approximate
Harmonic Envelope

_2AS

m At higher frequencies —oAL

m This give an inverse frequency relationship
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Pulse Train Approximate
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" S
Pulse Train Approximate
Harmonic Envelope

m Logarithmic form is more easily
understood .

mWegetOdBupto f -
m Equation becomes

a, |=20log(2A5)-20log(ft, )

nmax
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Pulse Train Approximate
Harmonic Envelope

!OBQIJ&F&.'F this gives
-10

Log(f)
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Applications

m Easier estimate of maximum levels of
frequency components of a digital signal

m Allows estimation of maximum harmonic
that needs to be considered

Must take into account frequency dependence
of coupling in some cases.
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Pulses with Finite Rise and Fall
Times

m WWe have a trapezoidal pulse
A -

Al2 —
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Pulses with Finite Rise and Fall
Times

m Pulse width Is average pulse width
m Rise and Fall times are equal
m Spectrum contains a second Sinc term

_sin(nfzfotp)__sin(nﬂfotr)_
nﬂ'fotp r]ﬂfotr

a, =2A0
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Pulses with Finite Rise and Fall
Times

m Maxima given by

a

nmax

— 20log(2A5)—20log(ft , )— 20log(~t, )

m where f=nf; again
m There are two break frequencies
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Pulses with Finite Rise and Fall
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Conclusions

m Virtually all signals are complex

They contain harmonics and other
frequencies

m Fourier Analysis/ gives spectrum for
mathematically expressible signals

m FFT processes measured data

m Simple graphs allow estimation of
frequencies to consider
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