
Frequency Spectra

What is your circuit radiating?



More Exactly

What frequencies exist in your signal?
What frequencies exist in your circuit?
What can I consider to be the highest 
frequency of interest?



Waveforms

Periodic
Sine or Cosine are most common
Pulse train is also very common

Aperiodic, or single pulse
Also quite common



Pulse Train

Rectangular Pulses
Even Symmetry
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Trigonometric Fourier Series

Where the fundamental radian frequency 
is

Note presence of harmonics only
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Harmonic Content Only?

Look at a square wave constructed from 
Harmonics
Add a non harmonic component
Use Fourier for Pulse Train.mcd



Coefficients

Harmonic amplitude coefficients

D.C. Term

Zero for odd symmetry

Zero for even symmetry
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Exponential Fourier Series

More compact
Complex expression allows negative 
frequencies

Mathematical convenience
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Exponential Form



Coefficients

Positive and Negative Frequencies
Half amplitude of an and bn
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Negative Frequencies



Pulse Train

Rectangular Pulses
Even Symmetry

T
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Pulse Train Harmonics

Using Complex Form

This gives

Note Sinc(x) function giving double sided 
spectrum
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Example Spectrum
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Example Spectrum
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Final Comments on Spectrum

Even Symmetry
b terms zero

cn = an/2
Spectrum becomes
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Final Comments on Spectrum

DC Component

Duty Cycle

DC

Harmonic Amplitudes
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Points

Harmonics separated by fundamental 
frequency
The larger T, the closer the lines are in the 
spectrum
Zero amplitudes occur when f = 1/tp
Negative amplitudes denote 180o phase 
shift.



Single Pulse

Aperiodic Waveform (Single Pulse)
Fourier Series is not applicable

T is infinite
Separation of terms is 0Hz

Continuous spectrum
Fourier Transform used



Single Pulse

No discrete frequencies
Complimentary pair of transform 
equations.
Pulse Definition
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Fourier Transform

Transform Pair
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Single Pulse Spectrum
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Single Pulse Spectrum
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Single Pulse Spectrum

Sinc tends to 1 as f tends to 0
Amplitude becomes Atp at 0Hz
Amplitude in V or V/Hz

Spectral Density
Zero Crossings at 1/tp, 2/tp etc.
Occur at higher frequencies as tp reduces



Single Pulse
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Single Pulse Spectrum
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Single Pulse Spectrum

Formulae work well for theoretical 
calculation
Measurements are slightly different.

Sampled data
No neat equation for pulse (stream)

Use Fast Fourier Transform (FFT)
Available in most maths packages
Available in many oscilloscopes



Some Practicalities

What is the highest frequency component I 
need to worry about?
Depends on spectrum of signal
Depends on frequency dependence of 
coupling
Look here at the maxima of spectrum
Produce a fairly simple design graph



Pulse Train Approximate 
Harmonic Envelope

Only interested in the peaks of the lobes

0 100 200 300 400 500 600
0

0.2

0.4

0.6

p t

1)sin( 0 ±=ptfnπ



Pulse Train Approximate 
Harmonic Envelope

This gives us

at frequencies
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Pulse Train Approximate 
Harmonic Envelope

Approximate envelope of the peaks 
follows

anmax is 

This comes from 
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Pulse Train Approximate 
Harmonic Envelope

Largest Amplitude occurs at the lowest 
frequency

The maximum amplitude is 
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Pulse Train Approximate 
Harmonic Envelope

At higher frequencies

This give an inverse frequency relationship
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Pulse Train Approximate 
Harmonic Envelope
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Pulse Train Approximate 
Harmonic Envelope

Logarithmic form is more easily 
understood
We get 0dB up to
Equation becomes 
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Pulse Train Approximate 
Harmonic Envelope

Plotting this gives
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Applications

Easier estimate of maximum levels of 
frequency components of a digital signal
Allows estimation of maximum harmonic 
that needs to be considered

Must take into account frequency dependence 
of coupling in some cases.



Pulses with Finite Rise and Fall 
Times

We have a trapezoidal pulse
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Pulses with Finite Rise and Fall 
Times

Pulse width is average pulse width
Rise and Fall times are equal
Spectrum contains a second Sinc term
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Pulses with Finite Rise and Fall 
Times

Maxima given by

where f=nf0 again
There are two break frequencies
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Pulses with Finite Rise and Fall 
Times
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Conclusions

Virtually all signals are complex
They contain harmonics and other 
frequencies

Fourier Analysis/ gives spectrum for 
mathematically expressible signals
FFT processes measured data
Simple graphs allow estimation of 
frequencies to consider
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