Frequency Spectra

What is your circuit radiating?

More Exactly

- What frequencies exist in your signal?
- What frequencies exist in your circuit?
- What can I consider to be the highest frequency of interest?

Waveforms

Periodic

Sine or Cosine are most common
 Pulse train is also very common

Aperiodic, or single pulse

□ Also quite common

Pulse Train

Rectangular Pulses
 Even Symmetry

 tp A

Trigonometric Fourier Series

$$f(t) = \frac{a_o}{2} + \sum_{n=1}^{\infty} a_n \cos n\omega_o t + \sum_{n=1}^{\infty} b_n \sin n\omega_o t$$

• Where the fundamental radian frequency is $\omega_o = 2\pi/T$

Note presence of harmonics only

Harmonic Content Only?

- Look at a square wave constructed from Harmonics
- Add a non harmonic component
- Use Fourier for Pulse Train.mcd

Coefficients

Harmonic amplitude coefficients
 $a_o = \frac{2}{T} \int_{-T/2}^{T/2} f(t) dt$ D.C. Term

Zero for odd symmetry

$$a_n = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cos n\omega_o t dt$$

Zero for even symmetry

$$b_n = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \sin n \omega_o t dt$$

Exponential Fourier Series

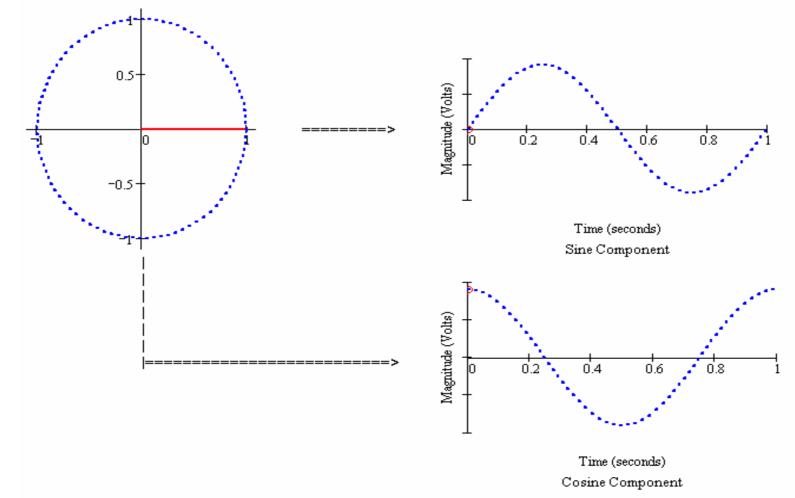
$$f(t) = \sum_{n=-\infty}^{n=\infty} c_n e^{jn\omega_o t} = c_o + 2\sum_{n=1}^{n=\infty} |c_n| \left[\cos(n\omega_o t - \theta_n) + j\sin(n\omega_o t - \theta_n) \right]$$

More compact

 Complex expression allows negative frequencies

□ Mathematical convenience

Exponential Form

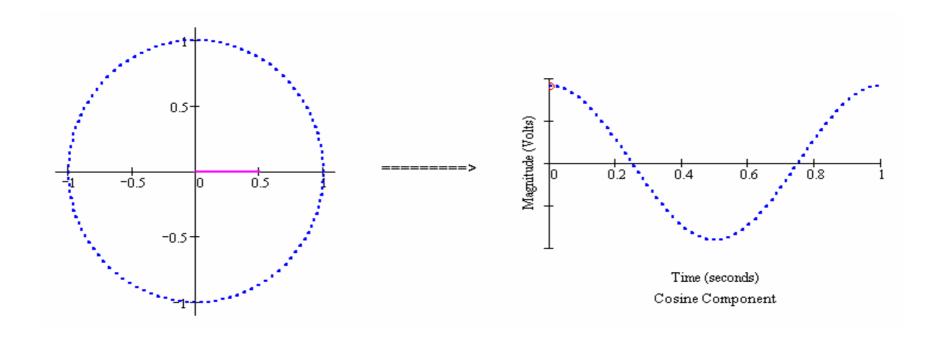


Coefficients

$$c_n = \frac{1}{2}(a_n - jb_n)$$
 $c_n^* = \frac{1}{2}(a_n + jb_n)$

Positive and Negative Frequencies
 Half amplitude of a_n and b_n

Negative Frequencies



Pulse Train

Rectangular Pulses
 Even Symmetry

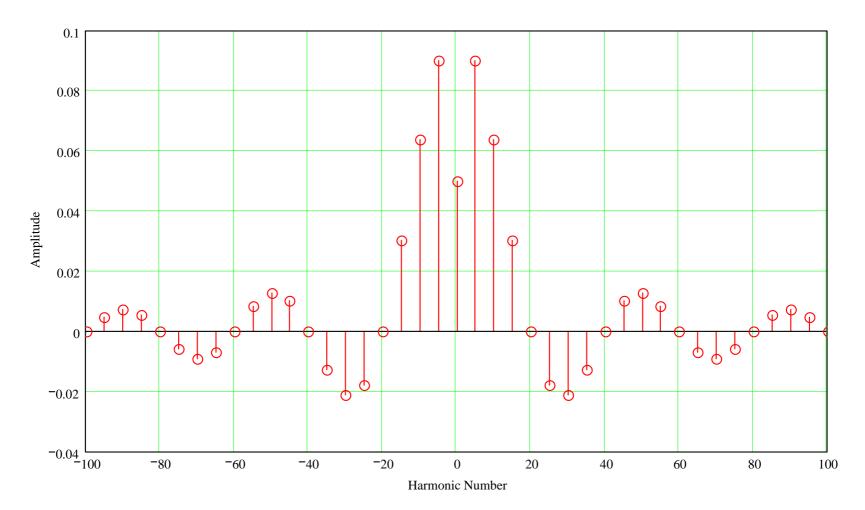
 tp A

Pulse Train Harmonics

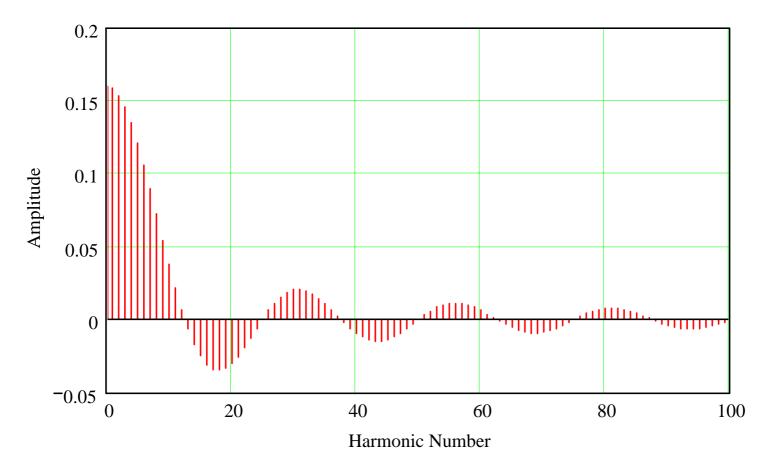
• Using Complex Form $c_{n} = \frac{1}{T} \int_{-t_{p}/2}^{t_{p}/2} Ae^{-jn\omega_{o}t} dt = \frac{1}{T} \left[-\frac{A}{jn\omega_{o}} e^{-jn\omega_{o}t} \right]_{-t_{p}/2}^{t_{p}/2} = \frac{A}{T} \left[\frac{e^{+jn\omega_{o}t_{p}/2} - e^{-jn\omega_{o}t_{p}/2}}{jn\omega_{o}} \right]$ • This gives $c_{n} = \frac{2A}{n\omega_{o}T} \sin(n\omega_{o} t_{p}/2) = \frac{At_{p}}{T} \frac{\sin(n\omega_{o} t_{p}/2)}{n\omega_{o} t_{p}/2} = \frac{At_{p}}{T} \frac{\sin(n\pi f_{o}t_{p})}{n\pi f_{o}t_{p}}$

Note Sinc(x) function giving double sided spectrum

Example Spectrum



Example Spectrum



Final Comments on Spectrum

Even Symmetry

b terms zero

C_n = a_n/2
Spectrum becomes

f(t) = At_p/T [1+2 \sum_{n=1}^{\infty} \frac{\sin(n\pi f_0 t)}{n\pi f_0 t} \cos(n\omega_0 t)]

Final Comments on Spectrum

DC Component

 $\delta = \frac{t_p}{T}$

 $V_{DC} = \frac{At_p}{T}$

Duty Cycle

 $V_{DC} = A\delta$

DC

 $a_n = 2A\delta \frac{\sin(n\pi\delta)}{n\pi\delta}$

Harmonic Amplitudes

Points

- Harmonics separated by fundamental frequency
- The larger T, the closer the lines are in the spectrum
- Zero amplitudes occur when $f = 1/t_p$
- Negative amplitudes denote 180° phase shift.

Single Pulse

- Aperiodic Waveform (Single Pulse)
 Fourier Series is not applicable

 T is infinite
 Separation of terms is 0Hz

 Continuous spectrum
- Fourier Transform used

Single Pulse

- No discrete frequencies
- Complimentary pair of transform equations.
- Pulse Definition

$$f(t) = \begin{cases} A & -\frac{t_p}{2} < t < \frac{t_p}{2} \\ 0 & elsewhere \end{cases}$$

Fourier Transform

Transform Pair

$$c(f) = \int_{-\infty}^{\infty} f(t) e^{-j\omega t} dt$$

$$f(t) = \int_{-\infty}^{\infty} c(f) e^{j\omega t} df$$

$$c(f) = A \int_{-\frac{t_p}{2}}^{\frac{t_p}{2}} e^{-j\omega t} dt$$

$$c(f) = \frac{A}{-j\omega} \left[\cos(\omega t) - j\sin(\omega t) \right]_{-\frac{t_p}{2}}^{\frac{t_p}{2}}$$

$$c(f) = \frac{2A}{\omega} \left[\sin(\omega \frac{t_p}{2}) \right]$$

$c(f) = At_p \left[\frac{\sin(\omega \frac{t_p}{2})}{\omega \frac{t_p}{2}} \right]$

$$c(f) = At_p \left[\frac{\sin(\pi f t_p)}{\pi f t_p} \right]$$

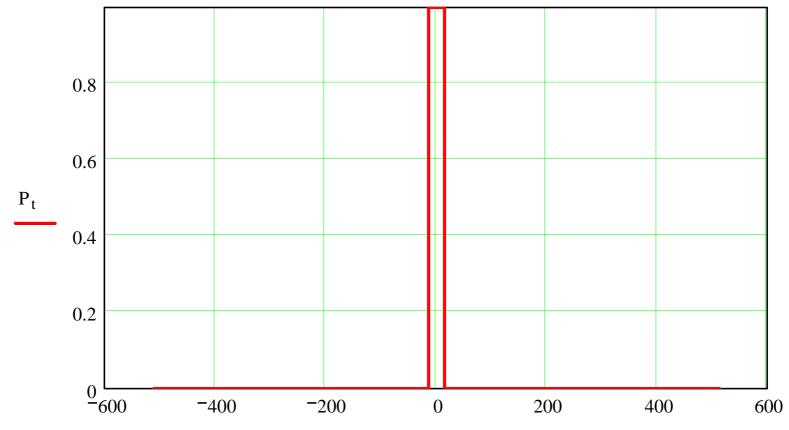
 $c(f) = At_p \sin c(\pi f t_p)$

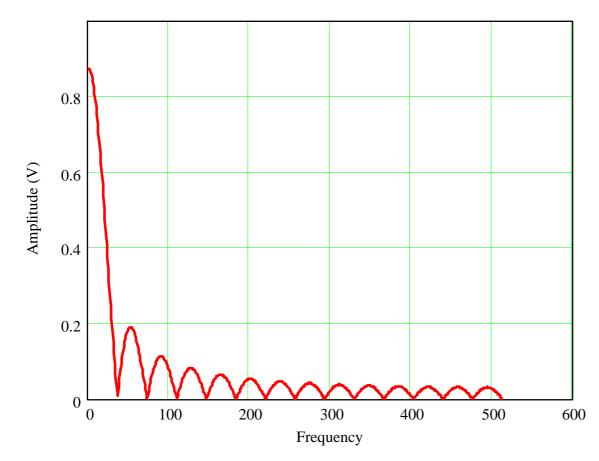
- Sinc tends to 1 as f tends to 0
- Amplitude becomes At_p at 0Hz
- Amplitude in V or V/Hz

□ Spectral Density

- Zero Crossings at $1/t_{p_1}^2/t_p$ etc.
- Occur at higher frequencies as t_p reduces

Single Pulse



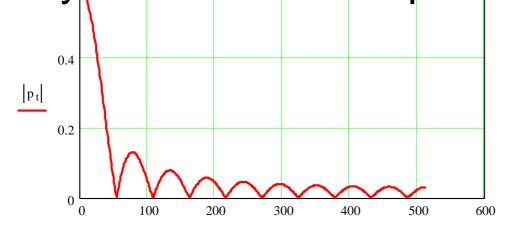


- Formulae work well for theoretical calculation
- Measurements are slightly different.
 Sampled data
 No neat equation for pulse (stream)
- Use Fast Fourier Transform (FFT)
 - Available in most maths packages
 - Available in many oscilloscopes

Some Practicalities

- What is the highest frequency component I need to worry about?
- Depends on spectrum of signal
- Depends on frequency dependence of coupling
- Look here at the maxima of spectrum
- Produce a fairly simple design graph

Only interested in the peaks of the lobes



 $\sin(n\pi f_0 t_p) = \pm 1$

This gives us

$$n\pi f_0 t_p = \frac{\pi}{2} \frac{3\pi}{2} \frac{5\pi}{2} etc$$

• at frequencies $f = nf_0 = \frac{1}{2t_p} \frac{3}{2t_p} \frac{5}{2t_p}$ etc

■ Approximate envelope of the peaks follows $f = \frac{1}{\pi t_p}$ $\frac{2A}{n\pi}$ ■ a_{nmax} is

$$\left|a_{n_{\max}}\right| = 2\frac{t_p}{T}A\frac{1}{\pi nf_o t_p}$$

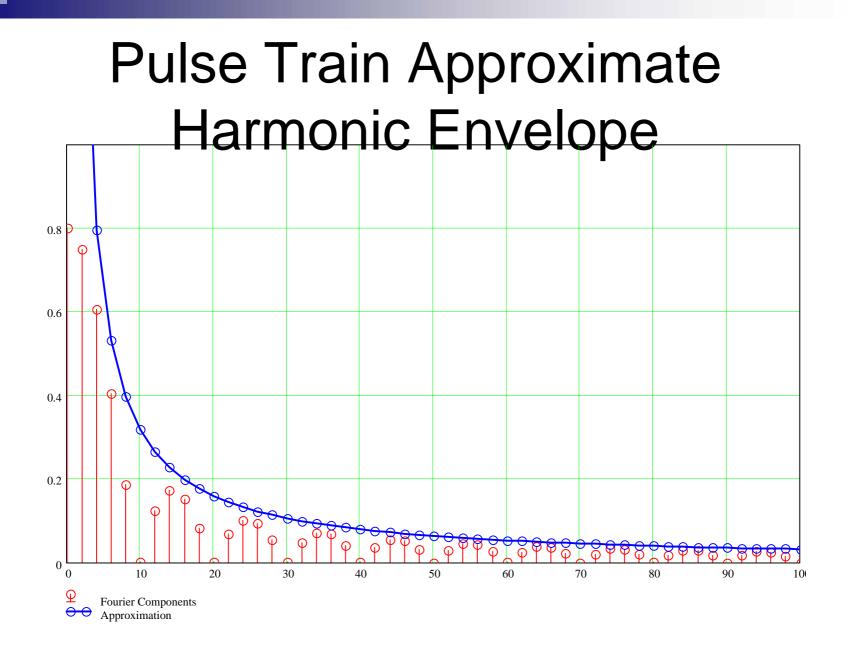
This comes from

• Largest Amplitude occurs at the lowest frequency $\frac{1}{\pi ft_p} = 1$ or $f = \frac{1}{\pi t_p}$

$\left|a_{n_{\max}}\right| = 2A\delta$

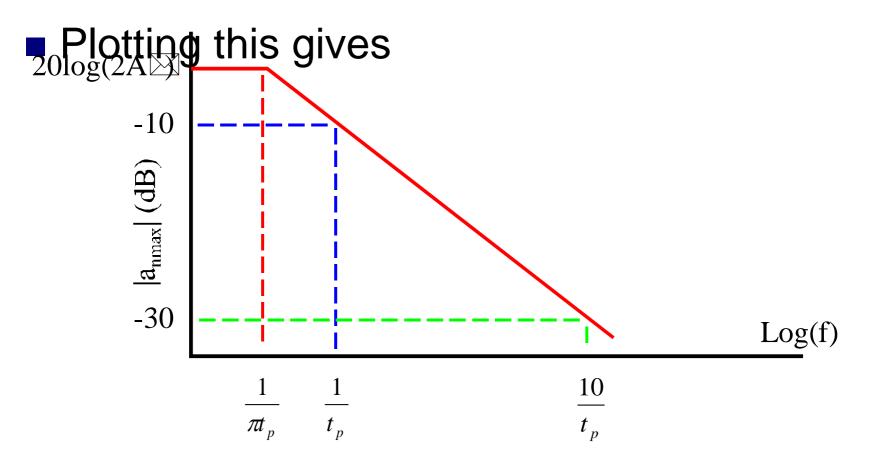
The maximum amplitude is

• At higher frequencies
$$|a_{n_{\max}}| = \frac{2A\delta}{\pi f t_p}$$



- Logarithmic form is more easily understood
- We get 0dB up to $f = \frac{1}{\pi t_p}$ • Equation becomes

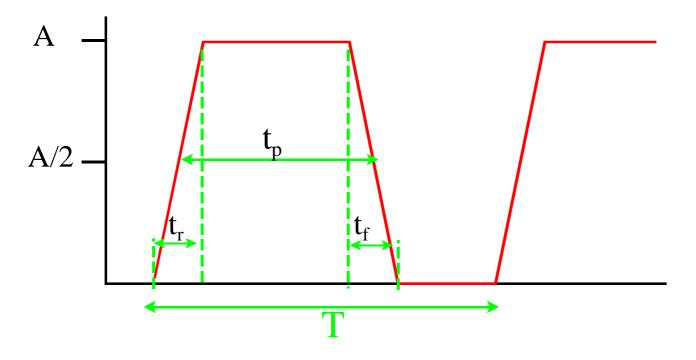
$$\left|a_{n_{\max}}\right| = 20\log(2A\delta) - 20\log(\pi f t_p)$$



Applications

- Easier estimate of maximum levels of frequency components of a digital signal
- Allows estimation of maximum harmonic that needs to be considered
 - Must take into account frequency dependence of coupling in some cases.

We have a trapezoidal pulse



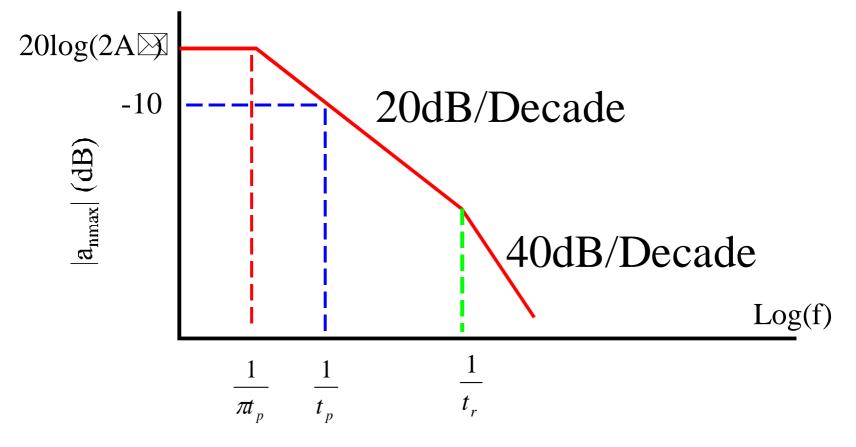
- Pulse width is average pulse width
- Rise and Fall times are equal
- Spectrum contains a second Sinc term

$$a_{n} = 2A\delta \left[\frac{\sin(n\pi f_{0}t_{p})}{n\pi f_{0}t_{p}}\right] \left[\frac{\sin(n\pi f_{0}t_{r})}{n\pi f_{0}t_{r}}\right]$$

Maxima given by

$$\left|a_{n_{\max}}\right| = 20\log(2A\delta) - 20\log(\pi t_p) - 20\log(\pi t_r)$$

where f=nf₀ again There are two break frequencies



Conclusions

- Virtually all signals are complex
 They contain harmonics and other frequencies
- Fourier Analysis/ gives spectrum for mathematically expressible signals
- FFT processes measured data
- Simple graphs allow estimation of frequencies to consider