GSM, EMC and Health Issues

Can a mobile phone call kill you?

What are the issues

- Field strength from GSM installation must not influence neighbouring systems
- Field strength from GSM installation must not present a health and safety risk to users

The Source - BTS

- Base Transceiver Station (BTS)
 - □ Generates the air interface to the mobile.
 - It is composed of an antenna and a transceiver
 - It is the first entity within the GSM network that detects the mobile signal

GSM - R Antenna

- Two phase dipole array on top of each antenna masts
- The array consist of 8 pairs of cross polarised dipoles housed in a metal reflector (2.3m long)
- Each array is capable of Tx and Rx through two separate channels

GSM-R Antenna

- GSM antennas tends to be sector antennas with a typical gain of:
 - □ 15 17dBi for 900MHz
 - □ 16 18dBi for 1800MHz
- Omnidirectional antenna are also used (though less common)
 8 – 10dB

GSM - R Antenna

- The signal level is split between the two antenna by power splitters
- The antennas are highly directional

Exclusion Distance - LOS

In theory, either due to fault or installation error, the entire power could be fed to one antenna, effectively doubling the power to that antenna

Power, one channel	53 dBm	200W
Power, 2 channels	56 dBm	400W
Cross polar loss	58 dBm	631 W
Power splitters by passed	61 dBm	1262 W
Shared mast, two antenna	64 dBm	2524 W

Far Field – Electric Field Strength

Protection Limits for biological matters

- Limits based on heating effects on humans
- This is expressed as a derivative of the ability of the exposure to excite water molecules in tissues
- It is weighted against the ability of the thermoregulatory systems of the body to remove this heat

Localised ICNIRP Exposure Guidelines for the general public

Whole body SAR	0.08 W/kg
Head and trunk SAR	2 W/kg
Limbs SAR	4 W/kg

Safe distances

MHz	ICNIRP Level	dBm	m	dBm	m
876	40.7	61	4.78	64	6.76
880	40.8	61	4.77	64	6.74
915	41.6	61	4.68	64	6.62
921	41.7	61	4.67	64	6.6
925	41.8	61	4.65	64	6.58

Safe distances at 900MHz

Power	41.25V/m	20V/m	10V/m	3V/m
53 dBm	1.88m	3.87 m	7.75m	25.82m
56 dBm	2.66m	5.48 m	10.95m	36.5
58 dBm	3.3m	6.88 m	13.76m	45.86
61 dBm	4.72m	9.73m	19.46m	64.86
64 dBm	6.67 m	13.75 m	27.5m	91.7m

So what should we recommend?

- Does NCC/ mobile operators allow shared mast?
 - Then an exclusion of 8m is recommended (7m plus a 1m buffer zone)
 - If not, a 6m exclusion zone is recommended (5m plus 1m buffer zone)

Remember this is the safe distance from a line of sight!!!!

What else can we do?

- Antenna are usually mounted on masts
- Height are usually 15m above but can have them lower depending on application
- So we need to re-evaluate the risk

Ground

Typical GSM Antenna Data

Horizontal Beam -3dB	$65^{\circ} \pm 3^{\circ}$
Side lobes in Horizontal	20 dB
Elevation beam with -3dB	$9.4^{\circ} \pm 0.6^{\circ}$
Electrical Tilt	$2^{\circ} \pm 0.5^{\circ}$
Side lobes in elevation	20 dB less than main beam
L by W by H	2310mm by 290mm by 210mm
Mechanical Tilt	0° to 12°, 1° intervals

Field seen at head height under normal condition

- Assume height human is 2m
- Assume antenna mast height of 15m

Field at Head Height

Ground

Field at Head height

53 dBm	0.78 V/m
56 dBm	0.9 V/m
58 dBm	1.38 V/m
61 dBm	1.95 V/m
64 dBm	2.75 V/m

Tilt Angle Effect

Antenna has mechanical tilt which

Helps optimise the beam and thus coverage away from the line of sight

Mechanical tilt may in fact affect the antenna pattern slight

Handheld Mobile

Туре	Base Station Tx	Handset Tx	Peak Handset Power	Operators (UK)
GSM900	935 -960 MHz	890 -915 MHz	2W	O2 and Vodaphone
GSM1800	1805 – 1880 MHz	1710 – 1785 MHz	1W	Orange and T- Mobile

Old mobiles may have a peak handset power of 20W The power is reduced to 100th of the nominal value if very close to a base station

Handheld Mobile

- The wavelength at 900 MHz is approximately 30cm which is within user distance to the head
- The far field zone is approximately 5cm (could be less than this)
- The electric field strength at 5cm is approximately 155 V/m...at 2.2 cm is 400V/m!!!!!

Propagation through Human Head

- The question is the efficiency of the human head as shield
- Ideally we want it to be a good reflector but that has implications
- We would assume the human head is fat

Given in terms of complex permittivity
Can obtain this from Maxwell's Equations

$$\nabla \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$$

$$\nabla \times \vec{H}_{s} = \underbrace{\vec{J}_{s}}_{\text{conduction current}} + \underbrace{j\omega\vec{D}_{s}}_{\text{displacement current}} = \sigma \vec{E}_{s} + j\omega\varepsilon\vec{E}_{s}$$

For a good insulator, the conduction current should be small compared to the displacement current

$$\sigma E \square \omega \varepsilon E \text{ or } \frac{\sigma}{\omega \varepsilon} \square 1$$

For a good conductor, the conduction current should be large compared to the displacement current

$$\sigma E \square \omega \varepsilon E \text{ or } \frac{\sigma}{\omega \varepsilon} \square 1$$

The human flesh is a good conductor at low frequency (e.g. 50 Hz) but a poor conductor at high frequency

$$\nabla \times H = j\omega \left(\varepsilon + \frac{\sigma}{j\omega}\right) E = j\omega\varepsilon_0 \left(\varepsilon_r - \frac{j\sigma}{\omega\varepsilon_0}\right) E$$

$$\varepsilon^{*} = \varepsilon_{0} \left(\varepsilon_{r} - \frac{j\sigma}{\omega\varepsilon_{0}} \right) = \varepsilon_{0} \left(\varepsilon' - j\varepsilon'' \right)$$
$$\Rightarrow \varepsilon' = \varepsilon_{r} = \underbrace{k}_{j}, \quad \varepsilon'' = \frac{\sigma}{\omega\varepsilon_{0}}$$
dielectric constant

Assuming the following:

$$\varepsilon' = \varepsilon_r = 5.5$$

 $\sigma = \omega \varepsilon_0 \varepsilon'' \approx 0.036 - 0.078$

$\frac{\sigma}{\omega\varepsilon} \approx 0.13 - 0.28$

Not a good insulator or a good conductor

How thick should the human fat be?

Skin depth (or penetration depth) is given by

$$\delta = \frac{1}{\omega \sqrt{\frac{\mu\varepsilon}{2} \left(\sqrt{1 + \left(\frac{\sigma}{\omega\varepsilon}\right)^2} - 1\right)}}$$

= 0.06 - 0.13m

Attenuation inside body

Impedance is given by

Reflection coefficient is given by

Transmission coefficient is given by

- Roughly, reflection loss is about 40%, while transmission is about 60%
- The reflection coefficient implies that majority of the 155V/m will propagate through the head
- This will be absorbed in the body resulting in localised heating...but