GSM, EMC and Health Issues

Can a mobile phone call kill you?

What are the issues

- Field strength from GSM installation must not influence neighbouring systems
- Field strength from GSM installation must not present a health and safety risk to users

Fundamental of EMC Engineering by Ade A. Ogunsola Copyright © 2004 by Ade Ogunsola.

The Source - BTS

- Base Transceiver Station (BTS)
\square Generates the air interface to the mobile.
$\square \mathrm{It}$ is composed of an antenna and a transceiver
$\square \mathrm{It}$ is the first entity within the GSM network that detects the mobile signal

GSM - R Antenna

- Two phase dipole array on top of each antenna masts
- The array consist of 8 pairs of cross polarised dipoles housed in a metal reflector (2.3m long)
- Each array is capable of Tx and Rx through two separate channels

GSM-R Antenna

- GSM antennas tends to be sector antennas with a typical gain of:
$\square 15-17 \mathrm{dBi}$ for 900 MHz
$\square 16-18 d B i$ for 1800 MHz
■ Omnidirectional antenna are also used (though less common)
$\square 8-10 \mathrm{~dB}$

GSM - R Antenna

- The signal level is split between the two antenna by power splitters
- The antennas are highly directional

Exclusion Distance - LOS

- In theory, either due to fault or installation error, the entire power could be fed to one antenna, effectively doubling the power to that antenna

Power, one channel	53 dBm	200 W
Power, 2 channels	56 dBm	400 W
Cross polar loss	58 dBm	631 W
Power splitters by passed	61 dBm	1262 W
Shared mast, two antenna	64 dBm	2524 W

Far Field - Electric Field Strength

Fundamental of EMC Engineering by Ade A. Ogunsola Copyright © 2004 by Ade Ogunsola.

Protection Limits for biological matters

- Limits based on heating effects on humans
- This is expressed as a derivative of the ability of the exposure to excite water molecules in tissues
- It is weighted against the ability of the thermoregulatory systems of the body to remove this heat

Localised ICNIRP Exposure Guidelines for the general public

Whole body SAR	$0.08 \mathrm{~W} / \mathrm{kg}$
Head and trunk SAR	$2 \mathrm{~W} / \mathrm{kg}$
Limbs SAR	$4 \mathrm{~W} / \mathrm{kg}$

Safe distances

MHz	ICNIRP Level	$\mathbf{d B m}$	\mathbf{m}	$\mathbf{d B m}$	\mathbf{m}
876	40.7	61	4.78	64	6.76
880	40.8	61	4.77	64	6.74
915	41.6	61	4.68	64	6.62
921	41.7	61	4.67	64	6.6
925	41.8	61	4.65	64	6.58

Fundamental of EMC Engineering by Ade A. Ogunsola Copyright © 2004 by Ade Ogunsola.

Fundamental of EMC Engineering by Ade A. Ogunsola Copyright © 2004 by Ade Ogunsola.

Safe distances at 900 MHz

Power	$41.25 \mathrm{~V} / \mathrm{m}$	$\mathbf{2 0 V} / \mathrm{m}$	$\mathbf{1 0 V} / \mathrm{m}$	$3 \mathrm{~V} / \mathrm{m}$
53 dBm	1.88 m	3.87 m	7.75 m	25.82 m
56 dBm	2.66 m	5.48 m	10.95 m	36.5
58 dBm	3.3 m	6.88 m	13.76 m	45.86
61 dBm	4.72 m	9.73 m	19.46 m	64.86
64 dBm	6.67 m	13.75 m	27.5 m	91.7 m

So what should we recommend?

- Does NCC/ mobile operators allow shared mast?
\square Then an exclusion of 8 m is recommended (7 m plus a 1 m buffer zone)
\square If not, a 6 m exclusion zone is recommended (5 m plus 1 m buffer zone)

Remember this is the safe distance from a line of sight!!!!

What else can we do?

- Antenna are usually mounted on masts
- Height are usually 15 m above but can have them lower depending on application
■ So we need to re-evaluate the risk

Ground

Fundamental of EMC Engineering by Ade A. Ogunsola Copyright © 2004 by Ade Ogunsola.

Typical GSM Antenna Data

Horizontal Beam -3dB	$65^{\circ} \pm 3^{\circ}$
Side lobes in Horizontal	20 dB
Elevation beam with -3 dB	$9.4^{\circ} \pm 0.6^{\circ}$
Electrical Tilt	$2^{\circ} \pm 0.5^{\circ}$
Side lobes in elevation	20 dB less than main beam
L by W by H	2310 mm by 290 mm by 210 mm
Mechanical Tilt	0° to $12^{\circ}, 1^{\circ}$ intervals

Field seen at head height under normal condition

- Assume height human is 2 m
- Assume antenna mast height of 15 m

Field at Head Height

$$
\text { dis }=\frac{\text { Height }}{\tan \theta}
$$

Ground

Field at Head height

53 dBm	$0.78 \mathrm{~V} / \mathrm{m}$
56 dBm	$0.9 \mathrm{~V} / \mathrm{m}$
58 dBm	$1.38 \mathrm{~V} / \mathrm{m}$
61 dBm	$1.95 \mathrm{~V} / \mathrm{m}$
64 dBm	$2.75 \mathrm{~V} / \mathrm{m}$

Tilt Angle Effect

- Antenna has mechanical tilt which
\square Helps optimise the beam and thus coverage away from the line of sight
\square Mechanical tilt may in fact affect the antenna pattern slight

Handheld Mobile

Type	Base Station Tx	Handset Tx	Peak Handset Power	Operators (UK)
GSM900	$935-960$ MHz	$890-915$ MHz	2 W	O2 and Vodaphone
GSM1800	$1805-1880$ MHz	$1710-1785$ MHz	1 W	Orange and T- Mobile

Old mobiles may have a peak handset power of 20W
The power is reduced to $100^{\text {th }}$ of the nominal value if very close to a base station

Handheld Mobile

■ The wavelength at 900 MHz is approximately 30 cm which is within user distance to the head

- The far field zone is approximately 5 cm (could be less than this)
- The electric field strength at 5 cm is approximately $155 \mathrm{~V} / \mathrm{m}$... at 2.2 cm is $400 \mathrm{~V} / \mathrm{m}!!!!!$

Propagation through Human Head

- The question is the efficiency of the human head as shield
- Ideally we want it to be a good reflector but that has implications
- We would assume the human head is fat

Electrical properties of human head

- Given in terms of complex permittivity
- Can obtain this from Maxwell's Equations

$$
\begin{aligned}
& \nabla \times \vec{H}=\vec{J}+\frac{\partial \vec{D}}{\partial t} \\
& \nabla \times \vec{H}_{s}=\underbrace{\vec{J}_{s}}_{\text {conduction current }}+\underbrace{j \omega \vec{D}_{s}}_{\text {displacement current }}=\sigma \vec{E}_{s}+j \omega \varepsilon \vec{E}_{s}
\end{aligned}
$$

Electrical properties of human head

- For a good insulator, the conduction current should be small compared to the displacement current

$$
\sigma E \square \omega \varepsilon E \text { or } \frac{\sigma}{\omega \varepsilon} \square 1
$$

Electrical properties of human head

- For a good conductor, the conduction current should be large compared to the displacement current

$$
\sigma E \square \omega \varepsilon E \text { or } \frac{\sigma}{\omega \varepsilon} \square 1
$$

Electrical properties of human head

- The human flesh is a good conductor at low frequency (e.g. 50 Hz) but a poor conductor at high frequency

$$
\nabla \times H=j \omega\left(\varepsilon+\frac{\sigma}{j \omega}\right) E=j \omega \varepsilon_{0}\left(\varepsilon_{r}-\frac{j \sigma}{\omega \varepsilon_{0}}\right) E
$$

Electrical properties of human head

$$
\begin{aligned}
& \varepsilon^{*}=\varepsilon_{0}\left(\varepsilon_{r}-\frac{j \sigma}{\omega \varepsilon_{0}}\right)=\varepsilon_{0}\left(\varepsilon^{\prime}-j \varepsilon^{\prime \prime}\right) \\
& \Rightarrow \varepsilon^{\prime}=\varepsilon_{r}=\underbrace{k}_{\text {dielectric constant }}, \varepsilon^{\prime \prime}=\frac{\sigma}{\omega \varepsilon_{0}}
\end{aligned}
$$

Electrical properties of human head

- Assuming the following:
$\varepsilon^{\prime}=\varepsilon_{r}=5.5$
$\sigma=\omega \varepsilon_{0} \varepsilon^{\prime \prime} \approx 0.036-0.078$

Electrical properties of human head

σ
 $\underline{\sigma} \approx 0.13-0.28$
 $\omega \varepsilon$
 Not a good insulator or a good conductor

How thick should the human fat be?

- Skin depth (or penetration depth) is given by

$$
\begin{aligned}
& \delta=\frac{1}{\omega \sqrt{\frac{\mu \varepsilon}{2}\left(\sqrt{1+\left(\frac{\sigma}{\omega \varepsilon}\right)^{2}}-1\right)}} \\
& =0.06-0.13 \mathrm{~m}
\end{aligned}
$$

Attenuation inside body

- Impedance is given by

$$
\begin{aligned}
& Z_{1}=\sqrt{\frac{j \omega \mu_{0}}{0.036+j \omega 5.5 \varepsilon_{0}}} \\
& Z_{2}=\sqrt{\frac{j \omega \mu_{0}}{0.078+j \omega 5.5 \varepsilon_{0}}}
\end{aligned}
$$

- Reflection coefficient is given by

$$
\left|\frac{Z_{1}-Z_{0}}{Z_{1}+Z_{0}}\right| ; \quad\left|\frac{Z_{2}-Z_{0}}{Z_{2}+Z_{0}}\right|
$$

- Transmission coefficient is given by

$$
\left|\frac{2 Z_{1}}{Z_{1}+Z_{0}}\right|
$$

$$
\left|\frac{2 Z_{2}}{Z_{2}+Z_{0}}\right|
$$

- Roughly, reflection loss is about 40\%, while transmission is about 60\%
- The reflection coefficient implies that majority of the $155 \mathrm{~V} / \mathrm{m}$ will propagate through the head
- This will be absorbed in the body resulting in localised heating...but

