Radiated EMI

Characteristics

How fields, but not pigs, fly!



"
Topics

m EM Propagation
Summary of free space effects
m Close Proximity Effects
Coupling on pcbs
Screening/shielding
Look at these by considering antennas



Antennas and Plane Waves

Waves radiated from an
antenna are spherical
waves but appear to a
local observer as uniform
plane waves

i — ]
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Why Antennas?

m Necessary for Measurements

m Basic radiation theory applies to radiative
coupling
m Used for shielding considerations

Can simplify the problem if we understand
what is going on



Free Space Propagation

m \We are a long way from the source
Far Field Approximation

Plane wave

m E and H fields are normal to each other and the
direction of propagation

m [ime varying E and H fields are inter-
related and always present together
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Time Varying Fields

m E and H are orthogonal

m Combination forms the Electromagnetic
Field H -



Plane Wave in 3-D Space

m |[f phase and amplitudes are correct we get
a plane wave.

m E and H are in Phase

m Their magnitudes have a fixed ratio
The Wave Impedance, 77



Plane Wave in 3-D Space

— DMlagnetic Field
— axes
= Electne Field



Plane Wave Properties

m \Wave travels one wavelength in one time
period ol =27

A

=—= 1A
T

m Propagation Velocity - v

2
m Phase change perm -  k =7” rad /m



Plane Wave Properties

1

N

u= m/s

m Propagation Velocity

N H=popt,  HIM
m Permeability

e=¢&¢&,  FIm
m Permittivity

m Free Space \ Ho&o



Plane Wave Properties

m Ratio of Fields is constant
In Free Space

%:12072 = 377 Q

m This is the wave impedance, 7,



Field Components

m \We consider cosinusoidal signals
Simplest building block. c.f. Fourier Analysis

m Phase shift can be seen
at a fixed point as time changes
at a fixed time as distance changes

m Equations must show this



Sinusoidal Signal in Free Space

= Ddlagnetic Field
— aes
= Electric Field
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Field Components

m Fields obtained by solving Maxwell's
equations

E, =E, COS(Zﬂf (t —ZD V/m
V

H, =H, COS[Z?Z‘f (t —ZD Alm
V

m Distance and time affect phase of
waveform



Field Components

m Putting V= f4 we get
E,=E,cos(wt—kyz) V/m

H,=H,cos(at—k,z) A/m
m This is a simplification of E, = E,e™"*

Comes from the wave equation which is of the

fOrm VZEX_I_kgEX :O



Field Components

m At any point in space and time the
argument of the cosine function is
constant

cos(wt —k,z) = const.
ot —k,z =const =a

_—a+tat
k0
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Field Components

m Differentiating this gives
gz_o
dt Kk,

m For arbitrary lossy media

1

Juz

m \Where 7 is the complex propagation

constant

0
V = —
/4
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Characteristic Impedance of a
Medium

m Obtained from Maxwell's Equations
VXE =-Jou,H

m Simpler version would be

ok, oy,
SRR,
/A J
. 1
mgiving H, = E, |-|y:i|5X H, = o E
4o o W,
Ho
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Characteristic Impedance of a
Medium

m Generally ,7:\/;:‘\5\‘
¢ |H

m \Wave Impedance in Q.

N, =120z =377C2



Power in an Plane Wave

m Power is Vector Cross Product of Electric
and Magnetic Fields.

This defines power propagation direction.

m Average power is more useful

P, = SRelExH) W

H Or =
p _IEL

—av
Mo



Summary

m Basic EM wave propagation is as a plane
wave

m Holds for all waves any reasonable
distance from the radiating source.

m Electric and Magnetic fields are normal to
each other and to the propagation
direction.

m \Wave impedance is the ratio of the fields
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Antennas

m I[mpedance
Transformer

m [ransition Device

m Radiates and
receives EM
power, as fields,
efficiently

m Fields describes as
components in 3-D




Generic Radiating Devices

High E Low E
Low H
CC High H
Electric Field Source Magnetic Field Source

Low Current High Current



Fields Radiating from Antennas

m Defined on a spherical co-ordinate system
Radiating fields form a spherical wavefront

m May be “near” or “far” from the antenna.
Have different properties.
Far Field is a plane wave

m Consider two fundamental radiators



Radiating Elements - Wire

m Correctly known
as Hertzian
Dipole

m Note Co-ordinate
System




Radiating Elements - Wire

m Co-ordinate system AZ

and Field
components are
shown




Simulated Dipole Currents
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Field Components

m Radial E,
m Azimuthal |:|¢
m Elevation E,

m Specific to a wire



Vector field of an oscillating Hertzian dipole

Simulated Dipole Fields
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Radiating Elements - Loop

Z
m Known as Magnetic A

Dipole

m Co-ordinate system
and Field
components are
shown

X



Field Components

—

m Radial H,

m Azimuthal =
q
m Elevation 0

m Specific to a loop



Field Components - Wire

_ _j.k.r
E,= ° A-1-m O-kz-z-cos(e)- L 5+ L ;
4m (kN (ker)
g Ik 2 1 1 1
- A 1n A~-Ko-sinlg).| ——
0= T Mot ){J'k'ﬁ(j-k-r)ﬂ(j-k-r)‘”’}
B _j.k.r — —
H g = ©  iksin(o) | 1 + 2
4.1 Ikt (kn? |




Field Components - Loop

m Magnetic Moment m = |-7t-b?
_e kT ®-u-m 2 1 1
H,= - -k -2-003(9)-{ 5+ 3}
4 no (k= (j-kr)
_j.k.r
Hg = ° -j-wu'm-kz-sin((%){ , = + L + 1 }
4m T omg PR Gken® (oken)®

_e_j.k.r

. 2 1 1
E — . . . . .k . ° —
0 | Jo-pu-m SIﬂ(@) |: kT + (j.k.r)2:|




Far Field
r>> A
m Distance from radiator
Many different definitions
m Only 1/r terms significant
m Plane Wave
i e i
E = 1lsin(&
g = Jou - (0) E ) jou
— jkr H I
H = jk=— 1Isin(6) ¢

/ Anr
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Near Field

m r<<A so higher power terms relevant

m \Wave impedance for wire and loop are
different

m Consider radiated field equations

m Find that either E or H is the larger
quantity
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Near Field - Wire

m E field is dominant

. _|E|_1 Yol 1 o
nf_H¢_a)5% wer

m I[mpedance is very high close to radiator
and reduces as r increases.



Near Field - Loop

m H field dominates

E | o

= WU = ur
H, P

VA

nf

m I[mpedance close to radiator is very low
and increases with r



Near to Far Transition

Near Field -

m Higher powers
Of I become Induction Field E?glgiem _Radiation
less effective Reactive Zone

m 1/r starts to
dominate
None are

dominant in the
transition zone

Source Vi7ES r



Wave Impedances

EOC%g,,HOC%Z,EOC%

Electric Fielo Plane Wave
Dominates
Magnetic Field Transitiort

Dominates Period

20
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Wave Impedances

H Field

1-10°
1-10%
\
\
- \
g
5 1-10° \\ —
% 777777777 f><£ 7777777777777777777777777777 —
3 //
g 100 y 4
= /
/
/
10
o 05 1 15 2 25 3 35 45
r normalised to near/far boundary
= EField
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Some Antenna Principles

m Efficient radiators and susceptors are

normally at least about one wavelength in
size.

m Quarter and half wavelength dimensions
are resonant radiators.
Omnidirectional

m Larger radiators tend to focus and direct
power in a preferred direction
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Antenna Characteristics

m Define antennas by how they radiate
power

Radiation Pattern
Gain
Directivity
m Also look at impedance match



Radiation Pattern

>

S
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Radiation Pattern

m [hree dimensional plot of
radiated power density

m Often presented as cuts Iin
azimuth or elevation
m Consider a dipole
Uniform current (1z)
Length, a.

=




Dlpole Radiating Fields

®




Elevation Pattern

Z aXIS

| For a dipole of length

L =05 ()

Far-Field Pattern of the Dipole Antenna.



Dipole Radiation Pattern -
Azimuthal

Radiation Pattern of the Dipole Antenna.

E / \ For a dipole of length
§ / \ L=05 (Ko)
= \
g / \
0 50 100 150

Theta (degrees)
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Dipole Radiation Pattern

Radiation Pattern of the Dipole Antenna.




Cutaway radiation pattern

Radiation Pattern of the Dipole Antenna.

il
/]I

AN

(X,Y,2)



The Maths of it!

m Dipole of length, a, with current, |, in z
direction

m Far Field r>2% r>>a r>>A

m Electric and Magnetic Fields .
Ez—JCO,UA H~==-rxE
7
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The Maths of it!

m Vector Magnetic Potential, A, is

¢ - jkz cos( &)
A, :j/l(z) 4m°l dz
m This gives
Current Distance
! 2t/ ca

je "“ Sln(u)sm(é') u =—cos(8)

_ T
/ 2
Magnitud Phase \

Length Pattern




Power Pattern

m Normal to plot the power pattern based on
the Poynting Vector.

m [otal Power is obtained by integrating
radiation intensity over full sphere



Antenna Pattern and FiI S

m Thisis for a
1.9\ dipole
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Pyramidal Horn Power Pattern

p>




Pyramidal Horn Power Pattern
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dB Equivalent

/N

~

[

V
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Polar Plot (dB or Linear)
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Directivity

m Measure of how well an antenna
concentrates, or directs, transmitted
power.

m Also measure of antenna’s receiving
sensitivity.

m Correct definition is 3-D function over full
sphere.

m Normally quote maximum radiation
direction.



Directivity

m Radiated power density in a certain
direction compared to power density of an
Isotropic radiator radiating same power.

U(6.4)

D(0.9)-"
average

m Relates directly to beamwidth
Higher Directivity gives a narrower beam




Directivity

m Can be related to the Normalised Electric
Field Pattern (Max value = 1)

U(0,4)=U . |F(0.0)

m Average Radiated Power Density

U verage = i W / steradian
A




Radiated Power

m Two ways of looking at it

2T

P = [[U(6,gHQ

m and, for an isotropic radiator

2T

P = [|Uperaed@ = 47U
00

average



Directivity

m Picking from these equations
Uy F (0, 9) 47

D(6,¢)=—7
[ [u(6,¢)0
m giving 2
0(6,9)= - OO ax

[[Fegfoa ™
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Directivity

m Antenna Directivity is maximum value of
directive gain
Ar

D = max D(6’,¢):Q—

m Derivation in notes or obtain by looking at
previous equation

m Depends directly on beamwidth



Directivity

@

Isotropically Distributed
D=1

<

Radiation intensity from an
Actual Antenna

D47
QA
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Solid Angle - 1

m In 2-D the angle in radians is given by the
length of the arc cut off by the bounding
lines of the angle

m O = s/rradians
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Solid Angle - 2

m [n 3-D the solid angle is defined by a cone.

m Solid angle is given as the ratio of the

surface area of the sphere cut-out by the
cone

mw = S/r.
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Gain

m Why?
Directivity is also known as directive gain
Why use a second measure of the same
thing?

m Convenience
Relates input power to transmitted power

Shows how efficient the antenna is at
transforming guided energy to transmitted
energy
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Gain

m Definition

417 X ratio of radiation intensity in a given
direction to the net power accepted by the
antenna

_ 4. U0.9)
G(6,4)=4r =

in
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Losses

m [ here will be losses

m We (E)efine antenna efficiency as

e=—
¥

n

m Substitute into Gain equation

G(H,¢):47ZU(§’¢)€ = 3(g’¢)e —eD(6,9)

r average
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Gain

m Maximum Power Gain G=eD
m G and D are dimensionless.
m Often quoted in dB

m Also quoted in dB relative to a Dipole (dBd) or
|sotropic Radiator (dBi)

m Dipole Directivity
D=1.5
D=1.76dBi
D=0dBd
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Antenna Losses

m Efficiency reduced by two loss sources
m Reflection at antenna input

m Ohmic losses in antenna

m Simulation on next slide

m 50Q) line with 60Q) load and 150Q) source
resistance



Pulse on a Transmission Line

FRAME-| ngyip + 11-At
_6

Iow generate an anttmation clip of the woltage on this TL. For best results, in the o

L
k=1 nz+1 zg=(k-1)— titne =

1s

"Arnimate” dialog box choose To = 120

Voltage (V)

20

10

Woltage onthe TL (pulse source).

10

100 200 300

T (meters)

400

At time (pes)
titne = 0.000

For a TL wnth
L =400 (m)

n= 2% 10° (mf
5)



Reflection Loss

m Caused by reflection coefficient, I

[ defined by line and load impedances
= ZL B ZO
7, +Z,

[ gives ratio of reflected signal to incident
signal — E, H, Vor |.

It is not a power ratio
m Square it to get the power ratio



Antenna Measurements

m Equations to date would allow
measurement of
Antenna gain by two methods

s Comparison
m Summation of measured radiated powers

Efficiency

s Compare measured output power to input power



Radiation Resistance

m Transmitting Antenna
equivalent circuit

m Power dissipated
_—\l "R, = P+P,

= Radigion Resistance
R, = Q

2
m‘



Effective Collecting Aperture

m Multiply Effective Aperture (A,) by incident
power density to get received power

m A, Is actual aperture multiplied by
efficiency
m Used for aperture antennas

Horns
Patches



Effective Collecting Aperture

m Receiving Antenna

Equiyalent Circuit
P _E\I \ R,

In

(

P ——R
2 " (R +R,

o Substltute for | v,
i

j
Xln +XL)2



Maximum Power Transfer
Rin :RL X, :_XL

In

m Conjugate match

m Substitute this plus equation for Input
Resistance
SV

" 8R

m Assume zero losses



Effective Area

m Substitute into original equation

MV
Ae_8RF>

rv

v

m As power density P :‘zﬂ




Effective Length

m Used for wire antennas with no real area

Received voltage for incident Field
V

| =—
E
m This gives

_ [rRA

e m
307




I
Some Final Useful Equations

m Apertures of antennas
/12
Ar

A,(6.4)=D(6,4)

m SO

oA, (0.)=G(0.9) -

4z

m for an aperture Antenna
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